Artificial molecular machines (AMMs) built from mechanically interlocked molecules (MIMs) can use energy ratchets to control the unidirectional motion of their component parts. These energy ratchets are operated by the alteration of kinetic barriers and thermodynamic wells, which are, in turn, determined by the switching on and off of noncovalent interactions. Previously, we have developed artificial molecular pumps (AMPs) capable of pumping rings consecutively onto a collecting chain as part of a molecular dumbbell, leading to the formation of rotaxanes. Here, we report a molecular dual pump (MDP) consisting of two individual AMPs linked in a head-to-tail fashion, wherein a single ring is pumped, in a linear manner, on and off a dumbbell involving a [2]rotaxane intermediate by exploiting the redox properties of the two pumps. This MDP, defined by the finely tuned noncovalent interactions and fueled by either chemicals or electricity, utilizes an energy ratchet mechanism to capture a ring and subsequently release it back into solution. The unidirectional motion and the resulting controlled capture and release of the ring were followed by 1D and 2D H-1 NMR spectroscopy and supported by control experiments. This molecular dual pump may be considered to be a forerunner of AMMs that are capable of pumping rings across a membrane in a way similar to how bacteriorhodopsin transports protons from one side of a membrane to the other under the influence of light. Such extensive multicomponent AMMs can lead potentially to molecular transporting platforms with positional and directional control of cargo uptake and release when, and only when, instructed.

A Molecular Dual Pump

Pezzato, C.;
2019

Abstract

Artificial molecular machines (AMMs) built from mechanically interlocked molecules (MIMs) can use energy ratchets to control the unidirectional motion of their component parts. These energy ratchets are operated by the alteration of kinetic barriers and thermodynamic wells, which are, in turn, determined by the switching on and off of noncovalent interactions. Previously, we have developed artificial molecular pumps (AMPs) capable of pumping rings consecutively onto a collecting chain as part of a molecular dumbbell, leading to the formation of rotaxanes. Here, we report a molecular dual pump (MDP) consisting of two individual AMPs linked in a head-to-tail fashion, wherein a single ring is pumped, in a linear manner, on and off a dumbbell involving a [2]rotaxane intermediate by exploiting the redox properties of the two pumps. This MDP, defined by the finely tuned noncovalent interactions and fueled by either chemicals or electricity, utilizes an energy ratchet mechanism to capture a ring and subsequently release it back into solution. The unidirectional motion and the resulting controlled capture and release of the ring were followed by 1D and 2D H-1 NMR spectroscopy and supported by control experiments. This molecular dual pump may be considered to be a forerunner of AMMs that are capable of pumping rings across a membrane in a way similar to how bacteriorhodopsin transports protons from one side of a membrane to the other under the influence of light. Such extensive multicomponent AMMs can lead potentially to molecular transporting platforms with positional and directional control of cargo uptake and release when, and only when, instructed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3461783
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 52
  • OpenAlex ND
social impact