Since aluminium is one of the most widely available elements in Earth’s crust, developing rechargeable aluminium batteries offers an ideal opportunity to deliver cells with high energy-to-price ratios. Nevertheless, finding appropriate host electrodes for insertion of aluminium (complex) ions remains a fundamental challenge. Here, we demonstrate a strategy for designing active materials for rechargeable aluminium batteries. This strategy entails the use of redox-active triangular phenanthrenequinone-based macrocycles, which form layered superstructures resulting in the reversible insertion and extraction of a cationic aluminium complex. This architecture exhibits an outstanding electrochemical performance with a reversible capacity of 110 mA h g –1 along with a superior cyclability of up to 5,000 cycles. Furthermore, electrodes composed of these macrocycles blended with graphite flakes result in higher specific capacity, electronic conductivity and areal loading. These findings constitute a major advance in the design of rechargeable aluminium batteries and represent a good starting point for addressing affordable large-scale energy storage.

Rechargeable aluminium organic batteries

Pezzato C.;
2019

Abstract

Since aluminium is one of the most widely available elements in Earth’s crust, developing rechargeable aluminium batteries offers an ideal opportunity to deliver cells with high energy-to-price ratios. Nevertheless, finding appropriate host electrodes for insertion of aluminium (complex) ions remains a fundamental challenge. Here, we demonstrate a strategy for designing active materials for rechargeable aluminium batteries. This strategy entails the use of redox-active triangular phenanthrenequinone-based macrocycles, which form layered superstructures resulting in the reversible insertion and extraction of a cationic aluminium complex. This architecture exhibits an outstanding electrochemical performance with a reversible capacity of 110 mA h g –1 along with a superior cyclability of up to 5,000 cycles. Furthermore, electrodes composed of these macrocycles blended with graphite flakes result in higher specific capacity, electronic conductivity and areal loading. These findings constitute a major advance in the design of rechargeable aluminium batteries and represent a good starting point for addressing affordable large-scale energy storage.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3461778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 300
  • ???jsp.display-item.citation.isi??? 293
  • OpenAlex ND
social impact