The mushroom bodies (MBs), one of the main structures in the adult insect brain, play a critical role in olfactory learning and memory. Though historical genes such as dunce and rutabaga, which regulate the level of cAMP, were identified more than 30 years ago, their in vivo effects on cellular and physiological mechanisms and particularly on the Ca2+-responses still remain largely unknown. In this work, performed in Drosophila, we took advantage of in vivo bioluminescence imaging, which allowed real-time monitoring of the entire MBs (both the calyx/cell-bodies and the lobes) simultaneously. We imaged neuronal Ca2+-activity continuously, over a long time period, and characterized the nicotine-evoked Ca2+-response. Using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca2+-response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca2+-response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has PKA-independent effects through the cyclic nucleotide-gated Ca2+-channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects in the calyx/cell-bodies and in the lobes, suggesting a differential and regionalized regulation of AC. Our results provide insights into the complex Ca2+-response in the MBs, leading to the conclusion that cAMP modulates the Ca2+-responses through both PKA-dependent and -independent mechanisms, the latter through CNG-channels.

PKA and cAMP/CNG Channels Independently Regulate the Cholinergic Ca(2+)-Response of Drosophila Mushroom Body Neurons

Elena Carbognin;
2015

Abstract

The mushroom bodies (MBs), one of the main structures in the adult insect brain, play a critical role in olfactory learning and memory. Though historical genes such as dunce and rutabaga, which regulate the level of cAMP, were identified more than 30 years ago, their in vivo effects on cellular and physiological mechanisms and particularly on the Ca2+-responses still remain largely unknown. In this work, performed in Drosophila, we took advantage of in vivo bioluminescence imaging, which allowed real-time monitoring of the entire MBs (both the calyx/cell-bodies and the lobes) simultaneously. We imaged neuronal Ca2+-activity continuously, over a long time period, and characterized the nicotine-evoked Ca2+-response. Using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca2+-response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca2+-response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has PKA-independent effects through the cyclic nucleotide-gated Ca2+-channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects in the calyx/cell-bodies and in the lobes, suggesting a differential and regionalized regulation of AC. Our results provide insights into the complex Ca2+-response in the MBs, leading to the conclusion that cAMP modulates the Ca2+-responses through both PKA-dependent and -independent mechanisms, the latter through CNG-channels.
2015
File in questo prodotto:
File Dimensione Formato  
Pavot et al., 2015 eNeuro.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 13.82 MB
Formato Adobe PDF
13.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3461269
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact