My research work during the PhD was devoted to the development of optical gas sensors for two important constituents of natural gas: odorants and hydrogen. Odorants are added in natural gas because it is naturally colorless, tasteless and odorless. Therefore, before it is distributed to end-users, small amounts of thiols are added to assist in leak detection. The two most used odorants in Italian pipelines are TBM and THT. It is very important to measure these odorants: a too low concentration does not allow a person to detect if there is a leak, a too high concentration might alarm in vain. Currently, odorants in natural gas are measured with gas chromatography (GC). GC, however, has several flaws, such as high cost, routine maintenance and it requires a skilled technician to operate. Since both THT and TBM have a characteristic UV absorption spectrum, during this PhD project, a working prototype called MUDO (Mid-UV Detector for Odorants) that relies on UV absorption has been fabricated. The prototype comprises a deuterium lamp as a source of UV light, two optical fibers, two collimators, a gas flow cell and a UV Spectrometer. Moreover, two programs were written in python to operate the hardware, to collect spectra and to compute the concentrations. With MUDO, two on-site tests were made, one in Vicenza, where the gas network is odorized with THT, and one in Milan, where the gas network is odorized with TBM. These tests were performed in parallel to a GC, used as a reference. The results acknowledged MUDO as a valid method to measure odorant concentration in natural gas, as the difference between the values measured by MUDO and by GC managed to always stay between ±10%. Natural gas is a considerable portion of the world’s total energy supply. However, in the last few years, particular attention has been given to the transition to renewable energy, including the use of hydrogen. Indeed, to reduce the effects of climate change, the role of hydrogen will be very important. An immediate use for hydrogen is the decarbonization of heat: as it is a gaseous molecule at atmospheric conditions, it can be used as a direct replacement for natural gas within the gas grid. In various countries, trials have started to implement hydrogen in natural gas pipelines up to a percentage of 20% mol. This enables a lower carbon emission, without customers requiring disruptive and expensive changes in their homes. With this new path outlined, a new need emerges: the need to correctly determine the concentration of hydrogen in the natural gas pipeline. During this PhD, a gasochromic sensor for hydrogen based on noble metal (Au, Pt) nanoparticles covered Tungsten Oxide thin film was developed. Sensing performances are strongly influenced by the crystal structure and the catalyst used, with Pt coated crystalline tungsten oxide resulting as best. Nanoparticle’s dimensions, especially in the case of gold, seem to play a role in the mechanism, with smaller NPs displaying better H2 intake. Computational insights based on Density Functional Theory calculations suggest that this could be related to the processes occurring at the nanoparticle-WO3 interface. While platinum allows both heterolytic (i.e. at the interface) and homolytic (i.e. only on the metal) hydrogen dissociative adsorption, gold can catalyze only heterolytic absorption. These evidences, in combination with an analysis of the charges distribution, explain both the inferior sensing performances of Au compared to Pt and the strong dependance of sensing performances on nanoparticle size, which dictates the extension nanoparticle-WO3 interface. Finally, Pt NPs coated crystalline tungsten oxide thin films displayed excellent hydrogen sensing performances in methane. With various tests, the sensor proved to have excellent accuracy, repeatability and long term stability, with performances relatively independent from gas flow or atmosphere.
Il mio lavoro di ricerca durante il dottorato è stato dedicato allo sviluppo di sensori ottici di gas per due importanti costituenti del gas naturale: odorizzanti e idrogeno. Gli odorizzanti vengono aggiunti al gas naturale perché quest’ultimo è naturalmente incolore inodore. Pertanto, prima di essere distribuito, vengono aggiunte piccole quantità di tioli per facilitare il rilevamento delle perdite. I due odorizzanti più utilizzati nelle condutture italiane sono il TBM e il THT. È fondamentale misurare questi odorizzanti: una concentrazione troppo bassa non permette di rilevare se c'è una perdita, una concentrazione troppo alta potrebbe allarmare invano. Poiché sia THT che TBM hanno un caratteristico spettro di assorbimento UV, durante il dottorato è stato fabbricato un prototipo chiamato MUDO (Mid-UV Detector for Odorants) che si basa dalla spettrometria UV. Il prototipo è costituito da una lampada al deuterio come sorgente di luce UV, due fibre ottiche, due collimatori, una cella a flusso di gas e uno spettrometro UV. Inoltre, sono stati scritti due programmi in Python per far funzionare l'hardware, raccogliere gli spettri e calcolare le concentrazioni. Con MUDO sono stati effettuati due test in campo, uno a Vicenza, dove la rete del gas è odorizzata con THT, e uno a Milano, dove la rete del gas è odorizzata con TBM. Questi test sono stati eseguiti in parallelo ad un GC per confrontare le misurazioni. I risultati hanno riconosciuto MUDO come un metodo valido per misurare la concentrazione di odorizzante nel gas naturale, in quanto la differenza tra i valori misurati da MUDO e GC è stata sempre sotto al 10%. Il gas naturale è una parte considerevole del fabbisogno energetico totale mondiale. Tuttavia, negli ultimi anni, particolare attenzione è stata però dedicata al passaggio alle energie rinnovabili, tra cui l’uso dell’idrogeno. Infatti, per ridurre gli effetti del cambiamento climatico, il ruolo dell'idrogeno sarà molto importante. Un utilizzo immediato dell'idrogeno è la decarbonizzazione della rete del gas: essendo una molecola gassosa a condizioni atmosferiche, può essere utilizzato come diretto sostituto del gas naturale. In vari paesi sono iniziate delle sperimentazioni per implementare l'idrogeno nei gasdotti fino a una percentuale del 20%, consentendo una minore emissione di CO2. Con questo nuovo percorso delineato, emerge una nuova esigenza: la necessità di determinare la concentrazione di idrogeno nel gasdotto. Durante il dottorato è stato sviluppato un sensore gasocromico per idrogeno basato su film sottili di ossido di tungsteno ricoperti da nanoparticelle di metalli nobili (Au, Pt). È stato appurato che sensori costituiti da film cristallini ricoperti da nanoparticelle di platino mostrano le migliori prestazioni. Inoltre, specialmente nel caso dell'oro, nanoparticelle più piccole mostrano una migliore risposta all’idrogeno. Calcoli computazionali basati su calcoli DFT (Density Functional Theory) suggeriscono che ciò potrebbe essere correlato ai processi che si verificano all'interfaccia tra nanoparticella e WO3. Mentre il platino sembra catalizzare l'adsorbimento dissociativo dell'idrogeno sia eterolitico che omolitico, l'oro può catalizzare solo l'adsorbimento eterolitico. Queste evidenze, in combinazione con un'analisi della distribuzione delle cariche, spiegano sia l’inferiorità dell’oro rispetto al platino come catalizzatore, sia la dipendenza delle performance dalle dimensioni delle nanoparticelle. Infine, film cristallini di ossido di tungsteno rivestiti con nanoparticelle di platino hanno mostrato ottime prestazioni nel misurare idrogeno in metano. Con vari test, i sensori prodotti hanno dimostrato di avere eccellente accuratezza, ripetibilità e stabilità a lungo termine, con prestazioni indipendenti dal flusso di gas o dall'atmosfera utilizzata.
Materiali nanostrutturati per sensori di gas / Longato, Alessandro. - (2022 Apr 11).
Materiali nanostrutturati per sensori di gas
LONGATO, ALESSANDRO
2022
Abstract
My research work during the PhD was devoted to the development of optical gas sensors for two important constituents of natural gas: odorants and hydrogen. Odorants are added in natural gas because it is naturally colorless, tasteless and odorless. Therefore, before it is distributed to end-users, small amounts of thiols are added to assist in leak detection. The two most used odorants in Italian pipelines are TBM and THT. It is very important to measure these odorants: a too low concentration does not allow a person to detect if there is a leak, a too high concentration might alarm in vain. Currently, odorants in natural gas are measured with gas chromatography (GC). GC, however, has several flaws, such as high cost, routine maintenance and it requires a skilled technician to operate. Since both THT and TBM have a characteristic UV absorption spectrum, during this PhD project, a working prototype called MUDO (Mid-UV Detector for Odorants) that relies on UV absorption has been fabricated. The prototype comprises a deuterium lamp as a source of UV light, two optical fibers, two collimators, a gas flow cell and a UV Spectrometer. Moreover, two programs were written in python to operate the hardware, to collect spectra and to compute the concentrations. With MUDO, two on-site tests were made, one in Vicenza, where the gas network is odorized with THT, and one in Milan, where the gas network is odorized with TBM. These tests were performed in parallel to a GC, used as a reference. The results acknowledged MUDO as a valid method to measure odorant concentration in natural gas, as the difference between the values measured by MUDO and by GC managed to always stay between ±10%. Natural gas is a considerable portion of the world’s total energy supply. However, in the last few years, particular attention has been given to the transition to renewable energy, including the use of hydrogen. Indeed, to reduce the effects of climate change, the role of hydrogen will be very important. An immediate use for hydrogen is the decarbonization of heat: as it is a gaseous molecule at atmospheric conditions, it can be used as a direct replacement for natural gas within the gas grid. In various countries, trials have started to implement hydrogen in natural gas pipelines up to a percentage of 20% mol. This enables a lower carbon emission, without customers requiring disruptive and expensive changes in their homes. With this new path outlined, a new need emerges: the need to correctly determine the concentration of hydrogen in the natural gas pipeline. During this PhD, a gasochromic sensor for hydrogen based on noble metal (Au, Pt) nanoparticles covered Tungsten Oxide thin film was developed. Sensing performances are strongly influenced by the crystal structure and the catalyst used, with Pt coated crystalline tungsten oxide resulting as best. Nanoparticle’s dimensions, especially in the case of gold, seem to play a role in the mechanism, with smaller NPs displaying better H2 intake. Computational insights based on Density Functional Theory calculations suggest that this could be related to the processes occurring at the nanoparticle-WO3 interface. While platinum allows both heterolytic (i.e. at the interface) and homolytic (i.e. only on the metal) hydrogen dissociative adsorption, gold can catalyze only heterolytic absorption. These evidences, in combination with an analysis of the charges distribution, explain both the inferior sensing performances of Au compared to Pt and the strong dependance of sensing performances on nanoparticle size, which dictates the extension nanoparticle-WO3 interface. Finally, Pt NPs coated crystalline tungsten oxide thin films displayed excellent hydrogen sensing performances in methane. With various tests, the sensor proved to have excellent accuracy, repeatability and long term stability, with performances relatively independent from gas flow or atmosphere.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Alessandro_Longato_definitiva.pdf
embargo fino al 10/04/2025
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Licenza:
Altro
Dimensione
9.35 MB
Formato
Adobe PDF
|
9.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.