We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.
Erythrosin B as a New Photoswitchable Spin Label for Light-Induced Pulsed EPR Dipolar Spectroscopy
Aquilia, Sara;Gabbatore, Laura;De Zotti, Marta;Di Valentin, Marilena
;
2022
Abstract
We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.File | Dimensione | Formato | |
---|---|---|---|
ArnauBertran_molecules2022.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.