We study how the eigenvalues of a magnetic Schrodinger operator of Aharonov-Bohm type depend on the singularities of its magnetic potential. We consider a magnetic potential defined everywhere in R-2 except at a finite number of singularities, so that the associated magnetic field is zero. On a fixed planar domain, we define the corresponding magnetic Hamiltonian with Dirichlet boundary conditions and study its eigenvalues as functions of the singularities. We prove that these functions are continuous, and in some cases even analytic. We sketch the connection of this eigenvalue problem to the problem of finding spectral minimal partitions of the domain. (C) 2015 AIP Publishing LLC.

Eigenvalues variations for Aharonov-Bohm operators

Léna, Corentin
2015

Abstract

We study how the eigenvalues of a magnetic Schrodinger operator of Aharonov-Bohm type depend on the singularities of its magnetic potential. We consider a magnetic potential defined everywhere in R-2 except at a finite number of singularities, so that the associated magnetic field is zero. On a fixed planar domain, we define the corresponding magnetic Hamiltonian with Dirichlet boundary conditions and study its eigenvalues as functions of the singularities. We prove that these functions are continuous, and in some cases even analytic. We sketch the connection of this eigenvalue problem to the problem of finding spectral minimal partitions of the domain. (C) 2015 AIP Publishing LLC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3460415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact