In this paper, we determine, in the case of the Laplacian on the flat three-dimensional torus (R/Z)(3), all the eigenvalues having an eigenfunction which satisfies the Courant nodal domain theorem with equality (Courant-sharp situation). Following the strategy of angstrom. Pleijel (1956), the proof is a combination of an explicit lower bound of the counting function and a Faber-Krahn- type inequality for domains in the torus, deduced, as in the work of P. Berard and D. Meyer (1982), from an isoperimetric inequality. This inequality relies on the work of L. Hauswirth, J. Perez, P. Romon, and A. Ros (2004) on the periodic isoperimetric problem.

COURANT-SHARP EIGENVALUES OF THE THREE-DIMENSIONAL SQUARE TORUS

Léna, Corentin
2016

Abstract

In this paper, we determine, in the case of the Laplacian on the flat three-dimensional torus (R/Z)(3), all the eigenvalues having an eigenfunction which satisfies the Courant nodal domain theorem with equality (Courant-sharp situation). Following the strategy of angstrom. Pleijel (1956), the proof is a combination of an explicit lower bound of the counting function and a Faber-Krahn- type inequality for domains in the torus, deduced, as in the work of P. Berard and D. Meyer (1982), from an isoperimetric inequality. This inequality relies on the work of L. Hauswirth, J. Perez, P. Romon, and A. Ros (2004) on the periodic isoperimetric problem.
File in questo prodotto:
File Dimensione Formato  
A4-torus3d.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 194.99 kB
Formato Adobe PDF
194.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3460396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact