We consider the eigenvalues of the Laplacian, with a Neumann or Robin boundary condition, on an open, bounded, connected set in R-n with a C-2 boundary. We obtain upper bounds for the eigenvalues that have a corresponding eigenfunction that achieves equality in Courant's Nodal Domain theorem. In the case where the set is also assumed to be convex, we obtain explicit upper bounds in terms of some of the geometric quantities of the set.
Upper bounds for courant-sharp neumann and robin eigenvalues
Léna, Corentin
2020
Abstract
We consider the eigenvalues of the Laplacian, with a Neumann or Robin boundary condition, on an open, bounded, connected set in R-n with a C-2 boundary. We obtain upper bounds for the eigenvalues that have a corresponding eigenfunction that achieves equality in Courant's Nodal Domain theorem. In the case where the set is also assumed to be convex, we obtain explicit upper bounds in terms of some of the geometric quantities of the set.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A10-Pleijel-upper-bounds.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
801.07 kB
Formato
Adobe PDF
|
801.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.