In this note, we determine, in the case of the Laplacian on the flat two-dimensional torus (R/Z)(2), all the eigenvalues having an eigenfunction that satisfies Courant's theorem with equality (Courant-sharp situation). Following the strategy of angstrom. Pleijel (1956) [18], the proof is a combination of a lower bound (a la Weyl) of the counting function, with an explicit remainder term, and of a Faber-Krahn inequality for domains on the torus (deduced as in the work of P. Berard and D. Meyer from an isoperimetric inequality), with an explicit upper bound on the area. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.

Courant-sharp eigenvalues of a two-dimensional torus

Léna, Corentin
2015

Abstract

In this note, we determine, in the case of the Laplacian on the flat two-dimensional torus (R/Z)(2), all the eigenvalues having an eigenfunction that satisfies Courant's theorem with equality (Courant-sharp situation). Following the strategy of angstrom. Pleijel (1956) [18], the proof is a combination of a lower bound (a la Weyl) of the counting function, with an explicit remainder term, and of a Faber-Krahn inequality for domains on the torus (deduced as in the work of P. Berard and D. Meyer from an isoperimetric inequality), with an explicit upper bound on the area. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.
File in questo prodotto:
File Dimensione Formato  
A3-torus2d.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 367.62 kB
Formato Adobe PDF
367.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3460377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact