We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet-Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion's leading term. This allows inferring some remarkable consequences for Aharonov-Bohm eigenvalues when the singular part of the operator has two coalescing poles.

Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications

Felli, Veronica
;
Léna, Corentin
2020

Abstract

We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet-Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion's leading term. This allows inferring some remarkable consequences for Aharonov-Bohm eigenvalues when the singular part of the operator has two coalescing poles.
2020
File in questo prodotto:
File Dimensione Formato  
A11-mixed-bc.pdf

accesso aperto

Descrizione: Mixed boundary conditions
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 423.6 kB
Formato Adobe PDF
423.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3459194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact