Graphene-metals interfaces are investigated in many subject areas both applicative and speculative. The interest mainly stems from the possibility for CVD synthesis of large area graphene on metals. In this case the metal acts as a catalyst for complete dehydrogenetaion of hydrocarbon precursors that leaves carbon behind at the surface. Such bilayer are also very appealing for surface plasmon resonance devices, since graphene acts both as a protective layer and biorecognition element. Several pairs of graphene-metal interfaces have been studied in terms of SPR performance and physicalchemical properties at the interface. With regard to this last aspect, NEXAFS spectroscopy is a powerful method to study single-, double-, and few- layers graphene and to illustrate any evolution of the electronic states.
Graphene-metal interfaces for biosensors devices
Zuppella P.;Gerlin F.;Bacco D.;Corso A. J.;Tessarolo E.;Nardello M.;Silvestrini S.;Maggini M.;Pelizzo M. G.
2015
Abstract
Graphene-metals interfaces are investigated in many subject areas both applicative and speculative. The interest mainly stems from the possibility for CVD synthesis of large area graphene on metals. In this case the metal acts as a catalyst for complete dehydrogenetaion of hydrocarbon precursors that leaves carbon behind at the surface. Such bilayer are also very appealing for surface plasmon resonance devices, since graphene acts both as a protective layer and biorecognition element. Several pairs of graphene-metal interfaces have been studied in terms of SPR performance and physicalchemical properties at the interface. With regard to this last aspect, NEXAFS spectroscopy is a powerful method to study single-, double-, and few- layers graphene and to illustrate any evolution of the electronic states.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.