The strategic interest in the production of green hydrogen by sunlight-activated water splitting has stimulated significant efforts aimed at the implementation of active and cost-effective catalysts for the oxygen evolution reaction (OER), the overall process bottleneck. Herein, we report on an original fabrication route to OER electrocatalysts based on graphitic carbon nitride. In particular, the target systems were deposited on conductive glass substrates via a simple electrophoretic technique and functionalized with highly dispersed noble metals (Au, Ag or Au + Ag) in low amounts by radio frequency (RF)-sputtering under mild conditions. An advanced material characterization revealed the possibility of tailoring carbon nitride morphology as a function of the used precursor and of achieving a homogeneous spatial distribution of the functionalizing metals. The latter ranged from atomically dispersed (silver), to low-sized nanoaggregates (gold) or partially alloyed core–shell nanoparticles (gold+silver), with an intimate metal-nitride interfacial contact. Functional tests evidenced a remarkable sensitivity to Vis light even at low applied potentials, and photoelectrocatalytic performances directly dependent on the nature of metal species and on the features of the underlying carbon nitride deposit. These evidences, rationalized mainly on the basis of Schottky junctions and the possible concurrence of surface plasmon resonance (SPR), candidate the proposed strategy as a versatile route to cheap and efficient OER electrocatalysts for energy conversion.
Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization
Benedet M.Investigation
;Andrea Rizzi G.
Investigation
;Gasparotto A.Investigation
;Girardi L.Investigation
;Maccato C.
Investigation
;Barreca D.Investigation
2022
Abstract
The strategic interest in the production of green hydrogen by sunlight-activated water splitting has stimulated significant efforts aimed at the implementation of active and cost-effective catalysts for the oxygen evolution reaction (OER), the overall process bottleneck. Herein, we report on an original fabrication route to OER electrocatalysts based on graphitic carbon nitride. In particular, the target systems were deposited on conductive glass substrates via a simple electrophoretic technique and functionalized with highly dispersed noble metals (Au, Ag or Au + Ag) in low amounts by radio frequency (RF)-sputtering under mild conditions. An advanced material characterization revealed the possibility of tailoring carbon nitride morphology as a function of the used precursor and of achieving a homogeneous spatial distribution of the functionalizing metals. The latter ranged from atomically dispersed (silver), to low-sized nanoaggregates (gold) or partially alloyed core–shell nanoparticles (gold+silver), with an intimate metal-nitride interfacial contact. Functional tests evidenced a remarkable sensitivity to Vis light even at low applied potentials, and photoelectrocatalytic performances directly dependent on the nature of metal species and on the features of the underlying carbon nitride deposit. These evidences, rationalized mainly on the basis of Schottky junctions and the possible concurrence of surface plasmon resonance (SPR), candidate the proposed strategy as a versatile route to cheap and efficient OER electrocatalysts for energy conversion.File | Dimensione | Formato | |
---|---|---|---|
reprint_ChemEngJ Mattia.pdf
Accesso riservato
Descrizione: reprint - versione editore
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
18.7 MB
Formato
Adobe PDF
|
18.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SI_reprint_ChemEngJ Mattia.docx
Accesso riservato
Descrizione: reprint_supporting_information
Tipologia:
Altro materiale allegato
Licenza:
Accesso privato - non pubblico
Dimensione
29.13 MB
Formato
Microsoft Word XML
|
29.13 MB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.