We consider weak solutions with finite entropy production to the scalar conservation law ∂tu+divxF(u)=0in(0,T)×Rd.Building on the kinetic formulation we prove under suitable nonlinearity assumption on f that the set of non Lebesgue points of u has Hausdorff dimension at most d. A notion of Lagrangian representation for this class of solutions is introduced and this allows for a new interpretation of the entropy dissipation measure.

On the structure of weak solutions to scalar conservation laws with finite entropy production

Marconi E.
2022

Abstract

We consider weak solutions with finite entropy production to the scalar conservation law ∂tu+divxF(u)=0in(0,T)×Rd.Building on the kinetic formulation we prove under suitable nonlinearity assumption on f that the set of non Lebesgue points of u has Hausdorff dimension at most d. A notion of Lagrangian representation for this class of solutions is introduced and this allows for a new interpretation of the entropy dissipation measure.
File in questo prodotto:
File Dimensione Formato  
M-Structure-CVPDE.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 473.51 kB
Formato Adobe PDF
473.51 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact