The present thesis aims to assess if plants can anticipate and respond according to varying states of their surroundings, or they simply react passively to environmental elements. That is, if there are evidence of “goal-directed” actions in plants. To this end, the three-dimensional (3D) kinematical analysis was used to characterize the execution of approach-to-grasp movements in climbing plants toward supports with different intrinsic features (e.g., thickness). The first experiment was aimed at investigating if plants can perceive an element in the environment and plan a movement based on the structural properties of such element. To this end, the approach-to-grasp movement of pea plants (Pisum sativum L.) in different environmental conditions, namely a condition lacking a potential support, either with a support of different thickness or with the ungraspable pictures of the supports, was investigated. The second experiment was set to assess whether P. sativum plants can scale movement velocity as a function of the difficulty to coil a support obeying to the Speed–Accuracy Trade-off (SAT) phenomenon, the tendency for movement speed to covary with movement accuracy. The third experiment investigated whether P. sativum plants have evolved a motor accuracy mechanism as to correct online their movement by means of secondary movements (i.e., submovements), and whether their frequency production was influenced by the difficulty of the task. Results from the three experiments showed P. sativum plants not only acknowledged the presence of a support in the environment, but also scaled the kinematics of their tendrils (i.e., modified leaves used by the plant to grasp a support) in term of velocity and aperture (i.e., the distance between the tips of the tendrils) based on different support thickness and as a function of the difficulty to coil it. The fourth and the fifth experiments were aimed to assess the possible role of the above- (e.g., tendrils, apex, …) and the belowground (i.e., the root system) organs for thickness coding. In particular, the fourth experiment was aimed to assess the movement of P. sativum plants toward a support either inserted in or lifted to the ground, so that the support information was available (or not) to the root system. Results indicated that when the support was not available to the root system, plants were not able to locate it in the surrounding and to modulate the pattern of their approaching and grasping movement with respect to different support thickness. In the fifth experiment to better evaluate the possible role of the root system in the coding of support thickness the below- and aboveground thickness part of the support was varied. In one condition the belowground part of the support was thick, whereas the above part of the support was thin. In another condition the opposite combination was tested. Control conditions in which a one-sized support was presented to the plant, were compared to the perturbed conditions. Results not only confirmed the role of the root system in sensing, coding, and processing belowground information, but also that such information was evaluated and eventually modified at the level of the aerial part of the plant to fulfil the end-goal of the movement. Results are discussed in terms of a functional equilibrium reached through a crosstalk between the grounded and the aerial components of the plant. Altogether these findings provide preliminary evidence of “goal-directed” actions in plants and suggest the existence of a process that may like perception to action in brainless organisms. In sum, my results pave the way to the comprehension of the mechanisms showed by brainless organism for adapting their behavior to an ever-changing environment and provide new insights regarding the evolution of the link between cognition and action.
La presente tesi ha lo scopo di indagare se le piante rampicanti siano in grado di pianificare ed eseguire un movimento in base alle caratteristiche del supporto che devono afferrare. A tal fine, è stata utilizzata l’analisi cinematica per caratterizzare l’esecuzione del movimento di raggiungimento e aggrappo nelle piante rampicanti verso supporti con diverse proprietà strutturali (e.g., grandezza). Nel primo esperimento il movimento di raggiungimento ed aggrappo delle piante di pisello (Pisum sativum L.) è stato osservato in diverse condizioni sperimentali, ovvero in una condizione in cui non vi era il supporto, in presenza di un supporto di diversa grandezza o della fotografia del supporto, che ovviamente non poteva essere afferrato. Il secondo esperimento ha indagato se le piante di P. sativum fossero in grado di modulare la velocità del proprio movimento in base al grado di difficoltà nel compito rispettando il fenomeno della Speed–Accuracy Trade-off (SAT), ovvero la tendenza della velocità di movimento di variare in base alla accuratezza del movimento. Con il terzo esperimento ho esplorato l’esistenza di un meccanismo utile alla correzione del movimento durante la sua esecuzione. In particolare, mi sono concentrata sulla produzione di movimento secondari (i.e., sottomovimenti), e se la loro frequenza fosse influenzata dalla difficoltà del compito da eseguire. I risultati dei tre esperimenti hanno evidenziato che le piante di P. sativum non solo sono in grado di percepire la presenza di un supporto nell’ambiente, ma anche di modificare la cinematica del movimento dei cirri in base alla diversa grandezza del supporto e alla difficoltà nel compito. Il quarto e il quinto esperimento avevano lo scopo di verificare il possibile ruolo della parte aerea (i.e., i cirri, l’apice, …) e della parte sotterranea della pianta nel processo di codifica della grandezza del supporto. Il quarto esperimento ha considerato il movimento delle piante di P. sativum verso un supporto che poteva essere sia interrato o sollevato da terra, ovvero quando le informazioni del supporto erano disponibili (o meno) al sistema radicale. I risultati suggeriscono che quando il supporto è sollevato da terra, le piante P. sativum non sono in grado di localizzare il supporto nell’ambiente e di modificare il proprio movimento di approccio ed aggrappo in base alla sua grandezza. Nel quinto esperimento è stato utilizzato un supporto in cui la parte interrata variava in grandezza rispetto alla parte aerea. In particolare, in una condizione la parte interrata era grande, mentre quella aerea era piccola. Nell’altra condizione, invece, era stata testata la combinazione opposta. Inoltre, le condizioni in cui vi era una perturbazione della grandezza del supporto sono state confrontate con le condizioni di controllo, nelle quali veniva presentato alla pianta uno stimolo di una sola grandezza. I risultati non solo hanno confermato il ruolo del sistema radicale nel percepire, codificare e processare le informazioni sotterranee, ma hanno dimostrato che tali informazioni possono essere verificate ed eventualmente modificate a livello della parte aerea della pianta al fine di ottimizzare il movimento. I risultati, perciò, hanno suggerito l’esistenza di un equilibrio funzionale fra la parte aerea e sotterranea della pianta, il quale viene raggiunto attraverso uno scambio dinamico fra le due componenti. Tali evidenze hanno dimostrato sia che le piante sono in grado di agire “intenzionalmente” sul proprio ambiente sia l’esistenza di un processo che potrebbe unire percezione ed azione in organismi privi di un cervello. In conclusione, i miei risultati hanno aperto la strada alla comprensione del comportamento di adattamento verso un ambiente dinamico e mutevole in organismi privi di un cervello, quali le piante ed hanno fornito nuove informazioni sull’evoluzione del legame fra cognizione e azione.
Il movimento delle piante: uno sguardo sulla cognizione vegetale / Guerra, Silvia. - (2022 Mar 11).
Il movimento delle piante: uno sguardo sulla cognizione vegetale
GUERRA, SILVIA
2022
Abstract
The present thesis aims to assess if plants can anticipate and respond according to varying states of their surroundings, or they simply react passively to environmental elements. That is, if there are evidence of “goal-directed” actions in plants. To this end, the three-dimensional (3D) kinematical analysis was used to characterize the execution of approach-to-grasp movements in climbing plants toward supports with different intrinsic features (e.g., thickness). The first experiment was aimed at investigating if plants can perceive an element in the environment and plan a movement based on the structural properties of such element. To this end, the approach-to-grasp movement of pea plants (Pisum sativum L.) in different environmental conditions, namely a condition lacking a potential support, either with a support of different thickness or with the ungraspable pictures of the supports, was investigated. The second experiment was set to assess whether P. sativum plants can scale movement velocity as a function of the difficulty to coil a support obeying to the Speed–Accuracy Trade-off (SAT) phenomenon, the tendency for movement speed to covary with movement accuracy. The third experiment investigated whether P. sativum plants have evolved a motor accuracy mechanism as to correct online their movement by means of secondary movements (i.e., submovements), and whether their frequency production was influenced by the difficulty of the task. Results from the three experiments showed P. sativum plants not only acknowledged the presence of a support in the environment, but also scaled the kinematics of their tendrils (i.e., modified leaves used by the plant to grasp a support) in term of velocity and aperture (i.e., the distance between the tips of the tendrils) based on different support thickness and as a function of the difficulty to coil it. The fourth and the fifth experiments were aimed to assess the possible role of the above- (e.g., tendrils, apex, …) and the belowground (i.e., the root system) organs for thickness coding. In particular, the fourth experiment was aimed to assess the movement of P. sativum plants toward a support either inserted in or lifted to the ground, so that the support information was available (or not) to the root system. Results indicated that when the support was not available to the root system, plants were not able to locate it in the surrounding and to modulate the pattern of their approaching and grasping movement with respect to different support thickness. In the fifth experiment to better evaluate the possible role of the root system in the coding of support thickness the below- and aboveground thickness part of the support was varied. In one condition the belowground part of the support was thick, whereas the above part of the support was thin. In another condition the opposite combination was tested. Control conditions in which a one-sized support was presented to the plant, were compared to the perturbed conditions. Results not only confirmed the role of the root system in sensing, coding, and processing belowground information, but also that such information was evaluated and eventually modified at the level of the aerial part of the plant to fulfil the end-goal of the movement. Results are discussed in terms of a functional equilibrium reached through a crosstalk between the grounded and the aerial components of the plant. Altogether these findings provide preliminary evidence of “goal-directed” actions in plants and suggest the existence of a process that may like perception to action in brainless organisms. In sum, my results pave the way to the comprehension of the mechanisms showed by brainless organism for adapting their behavior to an ever-changing environment and provide new insights regarding the evolution of the link between cognition and action.File | Dimensione | Formato | |
---|---|---|---|
tesi_definitiva_Silvia_Guerra.pdf
accesso aperto
Descrizione: tesi_definitiva_Silvia_Guerra
Tipologia:
Tesi di dottorato
Licenza:
Altro
Dimensione
17.94 MB
Formato
Adobe PDF
|
17.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.