Acetylation is a highly abundant and dynamic post-translational modification (PTM) on histone proteins which, when present on chromatin-bound histones, facilitates the accessibility of DNA for gene transcription. The central metabolite, acetyl-CoA, is a substrate for acetyltransferases, which catalyze protein acetylation. Acetyl-CoA is an essential intermediate in diverse metabolic pathways, and cellular acetyl-CoA levels fluctuate according to extracellular nutrient availability and the metabolic state of the cell. The Michaelis constant (Km) of most histone acetyltransferases (HATs), which specifically target histone proteins, falls within the range of cellular acetyl-CoA concentrations. As a consequence, global levels of histone acetylation are often restricted by availability of acetyl-CoA. Such metabolic regulation of histone acetylation is important for cell proliferation, differentiation, and a variety of cellular functions. In cancer, numerous oncogenic signaling events hijack cellular metabolism, ultimately inducing an extensive rearrangement of the epigenetic state of the cell. Understanding metabolic control of the epigenome through histone acetylation is essential to illuminate the molecular mechanisms by which cells sense, adapt, and occasionally disengage nutrient fluctuations and environmental cues from gene expression. In particular, targeting metabolic regulators or even dietary interventions to impact acetyl-CoA availability and histone acetylation is a promising target in cancer therapy. Liquid chromatography coupled to mass spectrometry (LC-MS) is the most accurate methodology to quantify protein PTMs and metabolites. In this chapter, we present state-of-the-art protocols to analyze histone acetylation and acetyl-CoA. Histones are extracted and digested into short peptides (4–20 aa) prior to LC-MS. Acetyl-CoA is extracted from cells and analyzed using an analogous mass spectrometry-based procedure. Model systems can be fed with isotopically labeled substrates to investigate the metabolic preference for acetyl-CoA production and the metabolic dependence and turnover of histone acetylation. We also present an example of data integration to correlate changes in acetyl-CoA production with histone acetylation.
Integrated analysis of acetyl-CoA and histone modification via mass spectrometry to investigate metabolically driven acetylation
Carrer A.
2019
Abstract
Acetylation is a highly abundant and dynamic post-translational modification (PTM) on histone proteins which, when present on chromatin-bound histones, facilitates the accessibility of DNA for gene transcription. The central metabolite, acetyl-CoA, is a substrate for acetyltransferases, which catalyze protein acetylation. Acetyl-CoA is an essential intermediate in diverse metabolic pathways, and cellular acetyl-CoA levels fluctuate according to extracellular nutrient availability and the metabolic state of the cell. The Michaelis constant (Km) of most histone acetyltransferases (HATs), which specifically target histone proteins, falls within the range of cellular acetyl-CoA concentrations. As a consequence, global levels of histone acetylation are often restricted by availability of acetyl-CoA. Such metabolic regulation of histone acetylation is important for cell proliferation, differentiation, and a variety of cellular functions. In cancer, numerous oncogenic signaling events hijack cellular metabolism, ultimately inducing an extensive rearrangement of the epigenetic state of the cell. Understanding metabolic control of the epigenome through histone acetylation is essential to illuminate the molecular mechanisms by which cells sense, adapt, and occasionally disengage nutrient fluctuations and environmental cues from gene expression. In particular, targeting metabolic regulators or even dietary interventions to impact acetyl-CoA availability and histone acetylation is a promising target in cancer therapy. Liquid chromatography coupled to mass spectrometry (LC-MS) is the most accurate methodology to quantify protein PTMs and metabolites. In this chapter, we present state-of-the-art protocols to analyze histone acetylation and acetyl-CoA. Histones are extracted and digested into short peptides (4–20 aa) prior to LC-MS. Acetyl-CoA is extracted from cells and analyzed using an analogous mass spectrometry-based procedure. Model systems can be fed with isotopically labeled substrates to investigate the metabolic preference for acetyl-CoA production and the metabolic dependence and turnover of histone acetylation. We also present an example of data integration to correlate changes in acetyl-CoA production with histone acetylation.File | Dimensione | Formato | |
---|---|---|---|
2019_Book_CancerMetabolism.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
13.73 MB
Formato
Adobe PDF
|
13.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.