We analyze the problem of constructing multiple buy-and-hold mean-variance portfolios over increasing investment horizons in continuous-time arbitrage-free stochastic interest rate markets. The orthogonal approach to the one-period mean-variance optimization of Hansen and Richard (Econometrica 55(3):587-613, 1987) requires the replication of a risky payoff for each investment horizon. When many maturities are considered, a large number of payoffs must be replicated, with an impact on transaction costs. In this paper, we orthogonally decompose the whole processes defined by asset returns to obtain a mean-variance frontier generated by the same two securities across a multiplicity of horizons. Our risk-adjusted mean-variance frontier rests on the martingale property of the returns discounted by the log-optimal portfolio and features a horizon consistency property. The outcome is that the replication of a single risky payoff is required to implement such frontier at any investment horizon. As a result, when transaction costs are taken into account, our risk-adjusted mean-variance frontier may outperform the traditional mean-variance optimal strategies in terms of Sharpe ratio. Realistic numerical examples show the improvements of our approach in medium- or long-term cashflow management, when a sequence of target returns at increasing investment horizons is considered.
On horizon-consistent mean-variance portfolio allocation
Rotondi, F;
2022
Abstract
We analyze the problem of constructing multiple buy-and-hold mean-variance portfolios over increasing investment horizons in continuous-time arbitrage-free stochastic interest rate markets. The orthogonal approach to the one-period mean-variance optimization of Hansen and Richard (Econometrica 55(3):587-613, 1987) requires the replication of a risky payoff for each investment horizon. When many maturities are considered, a large number of payoffs must be replicated, with an impact on transaction costs. In this paper, we orthogonally decompose the whole processes defined by asset returns to obtain a mean-variance frontier generated by the same two securities across a multiplicity of horizons. Our risk-adjusted mean-variance frontier rests on the martingale property of the returns discounted by the log-optimal portfolio and features a horizon consistency property. The outcome is that the replication of a single risky payoff is required to implement such frontier at any investment horizon. As a result, when transaction costs are taken into account, our risk-adjusted mean-variance frontier may outperform the traditional mean-variance optimal strategies in terms of Sharpe ratio. Realistic numerical examples show the improvements of our approach in medium- or long-term cashflow management, when a sequence of target returns at increasing investment horizons is considered.File | Dimensione | Formato | |
---|---|---|---|
printed paper.pdf
non disponibili
Descrizione: Paper
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
656.41 kB
Formato
Adobe PDF
|
656.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.