Contemporary Artificial Pancreas (AP) consists of a subcutaneous (SC) glucose sensor, a SC insulin pump and a control algorithm. Even the most advanced systems are far from optimal, in particular due to the non-physiologic nature of SC route. While SC insulin delivery is convenient and minimally invasive, it introduces delays to insulin action that make tight control difficult, particularly during meals. In addition frequent patient interventions are needed, e.g., at mealtime. The intraperitoneal (IP) insulin delivery could address this major challenge since it exhibits a faster pharmacokinetics/pharmacodynamics, hence making easier to quickly respond to glycemic disturbances. A 1-day hospital closed-loop study has shown significant improvements of IP glucose control vs SC AP, and that meal announcement is not necessary. However, the IP AP has not been tested in more realistic everyday life conditions. In this work we have performed an in silico study of 14 days of an IP AP by using the UVA/Padova simulator which includes intra- and inter-day variability of insulin sensitivity and several real life scenarios. We show superiority of IP AP vs SC AP in terms of quality of glucose control (time in range 87% IP vs 80% SC) without the need of a meal announcement.
Artificial Pancreas: In Silico Study Shows No Need of Meal Announcement and Improved Time in Range of Glucose with Intraperitoneal vs. Subcutaneous Insulin Delivery
Toffanin C.;Magni L.;Cobelli C.
2021
Abstract
Contemporary Artificial Pancreas (AP) consists of a subcutaneous (SC) glucose sensor, a SC insulin pump and a control algorithm. Even the most advanced systems are far from optimal, in particular due to the non-physiologic nature of SC route. While SC insulin delivery is convenient and minimally invasive, it introduces delays to insulin action that make tight control difficult, particularly during meals. In addition frequent patient interventions are needed, e.g., at mealtime. The intraperitoneal (IP) insulin delivery could address this major challenge since it exhibits a faster pharmacokinetics/pharmacodynamics, hence making easier to quickly respond to glycemic disturbances. A 1-day hospital closed-loop study has shown significant improvements of IP glucose control vs SC AP, and that meal announcement is not necessary. However, the IP AP has not been tested in more realistic everyday life conditions. In this work we have performed an in silico study of 14 days of an IP AP by using the UVA/Padova simulator which includes intra- and inter-day variability of insulin sensitivity and several real life scenarios. We show superiority of IP AP vs SC AP in terms of quality of glucose control (time in range 87% IP vs 80% SC) without the need of a meal announcement.File | Dimensione | Formato | |
---|---|---|---|
IEEE_Toffanin_Magni_Cobelli.pdf
accesso aperto
Descrizione: © 2021 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
995.49 kB
Formato
Adobe PDF
|
995.49 kB | Adobe PDF | Visualizza/Apri |
Artificial_Pancreas_In_Silico_Study_Shows_2021.pdf
solo utenti autorizzati
Licenza:
Accesso privato - non pubblico
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.