We report the discovery of ancient massive merger events in the early-type galaxies NGC 1380 and NGC 1427, members of the Fornax galaxy cluster. Both galaxies have been observed by the MUSE integral-field-unit instrument on the VLT as part of the Fornax3D project. By fitting recently developed population-orbital superposition models to the observed surface brightness, stellar kinematic, age, and metallicity maps, we obtain the stellar orbits, age, and metallicity distributions of each galaxy. We then decompose each galaxy into multiple orbital-based components, including a dynamically hot inner stellar halo component that is identified as the relic of past massive mergers. By comparing to analogs from cosmological galaxy simulations, chiefly TNG50, we find that the formation of such a hot inner stellar halo requires the merger with a now-destroyed massive satellite galaxy of 3.7-1.5+2.7 × 1010 M⊙ (about one-fifth of its current stellar mass) in the case of NGC 1380 and of 1.5-0.7+1.6 ×1010 M⊙ (about one-fourth of its current stellar mass) in the case of NGC 1427. Moreover, we infer that the last massive merger in NGC 1380 happened ∼10 Gyr ago based on the stellar age distribution of the regrown dynamically cold disk, whereas the merger in NGC 1427 ended t ≲ 8 Gyr ago based on the stellar populations in its hot inner stellar halo. The major merger event in NGC 1380 is the first one with both merger mass and merger time quantitatively inferred in a galaxy beyond the local volume. Moreover, it is the oldest and most massive merger uncovered in nearby galaxies so far.
The Fornax3D project: Discovery of ancient massive merger events in the Fornax cluster galaxies NGC 1380 and NGC 1427
Corsini, Enrico Maria;
2022
Abstract
We report the discovery of ancient massive merger events in the early-type galaxies NGC 1380 and NGC 1427, members of the Fornax galaxy cluster. Both galaxies have been observed by the MUSE integral-field-unit instrument on the VLT as part of the Fornax3D project. By fitting recently developed population-orbital superposition models to the observed surface brightness, stellar kinematic, age, and metallicity maps, we obtain the stellar orbits, age, and metallicity distributions of each galaxy. We then decompose each galaxy into multiple orbital-based components, including a dynamically hot inner stellar halo component that is identified as the relic of past massive mergers. By comparing to analogs from cosmological galaxy simulations, chiefly TNG50, we find that the formation of such a hot inner stellar halo requires the merger with a now-destroyed massive satellite galaxy of 3.7-1.5+2.7 × 1010 M⊙ (about one-fifth of its current stellar mass) in the case of NGC 1380 and of 1.5-0.7+1.6 ×1010 M⊙ (about one-fourth of its current stellar mass) in the case of NGC 1427. Moreover, we infer that the last massive merger in NGC 1380 happened ∼10 Gyr ago based on the stellar age distribution of the regrown dynamically cold disk, whereas the merger in NGC 1427 ended t ≲ 8 Gyr ago based on the stellar populations in its hot inner stellar halo. The major merger event in NGC 1380 is the first one with both merger mass and merger time quantitatively inferred in a galaxy beyond the local volume. Moreover, it is the oldest and most massive merger uncovered in nearby galaxies so far.File | Dimensione | Formato | |
---|---|---|---|
2022_AA_664_A115_Zhu_F3D_Massive_Merger_Events.pdf
accesso aperto
Descrizione: 2022_AA_664_A115_Zhu_F3D_Massive_Merger_Events.pdf
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.