The solidification/stabilization of phosphogypsum using cemented paste backfill (OCPB) provides a low-cost and alternative in-situ technique for recycling phosphogypsum stockpiles. But the OCPB is far from obtaining steady states in which the pollutants would redistribute as a response to dynamic environmental conditions. Further, the associated chemical interactions and the mineralogy information of the solubility-controlling phases of con-taminants (fluorine and phosphorus) have not been thoroughly studied or fully understood. In this study, a framework coupling the chemical, mineralogical, and morphological analyses is used to determine the fluoride and phosphate retention mechanisms of immobilized OCPB. Then the pH-dependent leaching tests and numerical simulation is applied as a useful tool to identify the minerals controlling stabilized OCPB leaching behavior. The overall findings proved that aluminate-rich calcium silicate hydrates play an essential role in fluoride and phosphate retention. Both experimental and simulational acid neutralization and leaching curves indicate that the cementitious matrix works as a strong buffering material ensuring high pH conditions that are necessary for fluorine and phosphorus retention. Although discrepancies were observed in absolute fluorine and phosphorus leaching values at highly acidic conditions, the simulations are able to describe highly amphoteric leaching behavior. The simulation suggests that the aluminum species and calcium phosphates governed the solubility of fluorine and phosphorus, respectively. The results of this work would have implications for predicting the leaching behavior of OCPB in detrimental and multiple environments.
Retention of phosphorus and fluorine in phosphogypsum for cemented paste backfill: Experimental and numerical simulation studies
Liu, Yikai;Dalconi, Maria Chiara;Molinari, Simone;Valentini, Luca;Artioli, Gilberto
2022
Abstract
The solidification/stabilization of phosphogypsum using cemented paste backfill (OCPB) provides a low-cost and alternative in-situ technique for recycling phosphogypsum stockpiles. But the OCPB is far from obtaining steady states in which the pollutants would redistribute as a response to dynamic environmental conditions. Further, the associated chemical interactions and the mineralogy information of the solubility-controlling phases of con-taminants (fluorine and phosphorus) have not been thoroughly studied or fully understood. In this study, a framework coupling the chemical, mineralogical, and morphological analyses is used to determine the fluoride and phosphate retention mechanisms of immobilized OCPB. Then the pH-dependent leaching tests and numerical simulation is applied as a useful tool to identify the minerals controlling stabilized OCPB leaching behavior. The overall findings proved that aluminate-rich calcium silicate hydrates play an essential role in fluoride and phosphate retention. Both experimental and simulational acid neutralization and leaching curves indicate that the cementitious matrix works as a strong buffering material ensuring high pH conditions that are necessary for fluorine and phosphorus retention. Although discrepancies were observed in absolute fluorine and phosphorus leaching values at highly acidic conditions, the simulations are able to describe highly amphoteric leaching behavior. The simulation suggests that the aluminum species and calcium phosphates governed the solubility of fluorine and phosphorus, respectively. The results of this work would have implications for predicting the leaching behavior of OCPB in detrimental and multiple environments.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.