Managed and wild pollinators often cohabit in both managed and natural ecosystems. The western honeybee, Apis mellifera, is the most widespread managed pollinator species. Due to its density and behaviour, it can potentially influence the foraging activity of wild pollinators, but the strength and direction of this effect are often context-dependent. Here, we observed plant-pollinator interactions in 51 grasslands, and we measured functional traits of both plants and pollinators. Using a multi-model inference approach, we explored the effects of honeybee abundance, temperature, plant functional diversity, and trait similarity between wild pollinators and the honeybee on the resource overlap between wild pollinators and the honeybee. Resource overlap decreased with increasing honeybee abundance only in plant communities with high functional diversity, suggesting a potential diet shift of wild pollinators in areas with a high variability of flower morphologies. Moreover, resource overlap increased with increasing trait similarity between wild pollinators and the honeybee. In particular, central-place foragers of family Apidae with proboscis length similar to the honeybee exhibited the highest resource overlap. Our results underline the importance of promoting functional diversity of plant communities to support wild pollinators in areas with a high density of honeybee hives. Moreover, greater attention should be paid to areas where pollinators possess functional traits similar to the honeybee, as they are expected to be more prone to potential competition with this species.

Functional traits of plants and pollinators explain resource overlap between honeybees and wild pollinators

Cappellari, Andree
;
Bonaldi, Giovanna;Cerretti, Pierfilippo;Marini, Lorenzo
2022

Abstract

Managed and wild pollinators often cohabit in both managed and natural ecosystems. The western honeybee, Apis mellifera, is the most widespread managed pollinator species. Due to its density and behaviour, it can potentially influence the foraging activity of wild pollinators, but the strength and direction of this effect are often context-dependent. Here, we observed plant-pollinator interactions in 51 grasslands, and we measured functional traits of both plants and pollinators. Using a multi-model inference approach, we explored the effects of honeybee abundance, temperature, plant functional diversity, and trait similarity between wild pollinators and the honeybee on the resource overlap between wild pollinators and the honeybee. Resource overlap decreased with increasing honeybee abundance only in plant communities with high functional diversity, suggesting a potential diet shift of wild pollinators in areas with a high variability of flower morphologies. Moreover, resource overlap increased with increasing trait similarity between wild pollinators and the honeybee. In particular, central-place foragers of family Apidae with proboscis length similar to the honeybee exhibited the highest resource overlap. Our results underline the importance of promoting functional diversity of plant communities to support wild pollinators in areas with a high density of honeybee hives. Moreover, greater attention should be paid to areas where pollinators possess functional traits similar to the honeybee, as they are expected to be more prone to potential competition with this species.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3453699
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact