The analysis of causality among oil prices and, in general, between financial and economic variables is of central relevance in applied economic studies. The recent contribution of Lu et al. (2014) proposes a new causality test, the DCC-MGARCH Hong test. We show that the critical values of the test statistic should be evaluated through simulations to avoid potential Type I errors. We also note that rolling Hong tests represent a more viable solution in the presence of short-lived causality periods.

Time-varying Granger causality tests in the energy markets: A study on the DCC-MGARCH Hong test

Caporin M.
;
2022

Abstract

The analysis of causality among oil prices and, in general, between financial and economic variables is of central relevance in applied economic studies. The recent contribution of Lu et al. (2014) proposes a new causality test, the DCC-MGARCH Hong test. We show that the critical values of the test statistic should be evaluated through simulations to avoid potential Type I errors. We also note that rolling Hong tests represent a more viable solution in the presence of short-lived causality periods.
2022
File in questo prodotto:
File Dimensione Formato  
2022_CaporinCostola_ENEECO_preprint.pdf

accesso aperto

Descrizione: preprint
Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri
2022_CaporinCostola_ENEECO.pdf

non disponibili

Descrizione: versione editore
Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3452465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact