We prove the existence of a global Lipschitz minimizer of functionals of the form I (u) = \int \Omega f(\nabla u(x)) + g(x, u(x)) dx, u \in \phi + W1,1 0 (\Omega ), assuming that \phi satisfies the bounded slope condition (BSC). Our assumptions on the Lagrangian allow the function f to be strongly degenerate.
ON THE LIPSCHITZ REGULARITY FOR MINIMA OF FUNCTIONALS DEPENDING ON x, u, AND ∇u UNDER THE BOUNDED SLOPE CONDITION
Treu G.
2022
Abstract
We prove the existence of a global Lipschitz minimizer of functionals of the form I (u) = \int \Omega f(\nabla u(x)) + g(x, u(x)) dx, u \in \phi + W1,1 0 (\Omega ), assuming that \phi satisfies the bounded slope condition (BSC). Our assumptions on the Lagrangian allow the function f to be strongly degenerate.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GiaTreSICON2022.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
410.26 kB
Formato
Adobe PDF
|
410.26 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.