In this short paper, we describe a Bayesian beta linear model to analyse imprecise rating responses. The non-random imprecision is extracted from crisp responses via the Item Response Theory tree (IRtree) method and it is represented by means of beta fuzzy numbers. The parameters of the beta linear model are estimated using the adaptive Metropolis-Hastings algorithm, with the fuzzy likelihood function being used as empirical evidence for the imprecise observations. A real case study is used to show the characteristics of the fuzzy beta regression model.

A Bayesian beta linear model to analyze fuzzy rating responses

Antonio Calcagni
;
Massimiliano Pastore;Gianmarco Altoè;Livio Finos
2022

Abstract

In this short paper, we describe a Bayesian beta linear model to analyse imprecise rating responses. The non-random imprecision is extracted from crisp responses via the Item Response Theory tree (IRtree) method and it is represented by means of beta fuzzy numbers. The parameters of the beta linear model are estimated using the adaptive Metropolis-Hastings algorithm, with the fuzzy likelihood function being used as empirical evidence for the imprecise observations. A real case study is used to show the characteristics of the fuzzy beta regression model.
2022
Book of short papers - SIS 2022
51st metting of the Italian Statistical Society (SIS 2022)
File in questo prodotto:
File Dimensione Formato  
output.pdf

non disponibili

Tipologia: Postprint (accepted version)
Licenza: Accesso privato - non pubblico
Dimensione 109.73 kB
Formato Adobe PDF
109.73 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3451678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact