A few 18F-FDG PET/CT studies have revealed the presence of brain hypermetabolism in the brain stem and cervical spinal cord of patients within the amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) continuum. We aimed to investigate this finding through a hybrid PET/MRI system, allowing a more precise depiction of the spatial pattern of metabolic changes in the brain stem and cervical spinal cord. Methods: Twenty-eight patients with a diagnosis of ALS or a diagnosis of the behavioral variant of FTD plus motoneuron disease, as well as 13 control subjects, underwent 18F-FDG PET/MRI. Mean normalized 18F-FDG uptake in the midbrain/pons, medulla oblongata, and cervical spinal cord as defined on the individual's MRI scans were compared between groups. Furthermore, the associations between regional 18F-FDG uptake and clinical and demographic characteristics-including gene mutation, type of onset (bulbar, spinal, dementia), and clinical characteristics-were investigated. Results: A significant (P < 0.005) increment in glucose metabolism in the midbrain/pons and medulla oblongata was found in ALS/FTD patients (spinal-ALS and FTD-motor neuron disease subgroups) in comparison to controls. No relevant associations between clinical and metabolic features were reported, although medulla oblongata hypermetabolism was associated with shortened survival (P < 0.001). Conclusion: Increased glucose metabolism in the brain stem might be due to neuroinflammation, one of the key steps in the pathogenic cascade that leads to neurodegeneration in ALS/FTD. 18F-FDG PET/MRI could be a valuable tool to assess glial changes in the ALS/FTD spectrum and could serve as a prognostic biomarker. Large prospective initiatives would likely shed more light on the promising application of PET/MRI in this setting.
Brain Stem Glucose Hypermetabolism in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia and Shortened Survival: An 18F-FDG PET/MRI Study
Zanovello, Matteo;Sorarù, Gianni;Campi, Cristina;Anglani, Mariagiulia;Spimpolo, Alessandro;Berti, Sara;Mozzetta, Stefano;Cagnin, Annachiara;Cecchin, Diego
2022
Abstract
A few 18F-FDG PET/CT studies have revealed the presence of brain hypermetabolism in the brain stem and cervical spinal cord of patients within the amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) continuum. We aimed to investigate this finding through a hybrid PET/MRI system, allowing a more precise depiction of the spatial pattern of metabolic changes in the brain stem and cervical spinal cord. Methods: Twenty-eight patients with a diagnosis of ALS or a diagnosis of the behavioral variant of FTD plus motoneuron disease, as well as 13 control subjects, underwent 18F-FDG PET/MRI. Mean normalized 18F-FDG uptake in the midbrain/pons, medulla oblongata, and cervical spinal cord as defined on the individual's MRI scans were compared between groups. Furthermore, the associations between regional 18F-FDG uptake and clinical and demographic characteristics-including gene mutation, type of onset (bulbar, spinal, dementia), and clinical characteristics-were investigated. Results: A significant (P < 0.005) increment in glucose metabolism in the midbrain/pons and medulla oblongata was found in ALS/FTD patients (spinal-ALS and FTD-motor neuron disease subgroups) in comparison to controls. No relevant associations between clinical and metabolic features were reported, although medulla oblongata hypermetabolism was associated with shortened survival (P < 0.001). Conclusion: Increased glucose metabolism in the brain stem might be due to neuroinflammation, one of the key steps in the pathogenic cascade that leads to neurodegeneration in ALS/FTD. 18F-FDG PET/MRI could be a valuable tool to assess glial changes in the ALS/FTD spectrum and could serve as a prognostic biomarker. Large prospective initiatives would likely shed more light on the promising application of PET/MRI in this setting.File | Dimensione | Formato | |
---|---|---|---|
jnumed.121.262232.full.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
744.17 kB
Formato
Adobe PDF
|
744.17 kB | Adobe PDF | Visualizza/Apri |
777.full.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.