Recently, solar power generation systems are more and more popular and widely used in grid connected power generation, intelligent buildings, and power supply in remote areas. For photovoltaic panels, due to the influence of factors such as light intensity and ambient temperature, their output voltage and current become uns, and the output voltage of a single photovoltaic panel is considerably low. As a result, Boost circuits are needed for voltage boosting. PID controller is commonly used for Boost converter because it can effectively control the controlled object according to the characteristics of the controlled object. However, when the controlled object is complex and variable, the appropriate parameters are hardly to be selected by experience, and the fixed controller parameters may lead to unexpected performances under different working conditions. Here, a genetic algorithm combined with BP neural network PID control (GA-BPPID) is proposed to improve both dynamic and anti-interference performances of Boost circuit by introducing the global optimization ability of genetic algorithm and the adaptive adjustment characteristics of BP neural network. System modelling and detailed controller design procedures are provided. Finally, the theoretical analysis and controller design are validated by simulation results.

Design and analysis of genetic algorithm and BP neural network based PID control for boost converter applied in renewable power generations

Buja G.
2022

Abstract

Recently, solar power generation systems are more and more popular and widely used in grid connected power generation, intelligent buildings, and power supply in remote areas. For photovoltaic panels, due to the influence of factors such as light intensity and ambient temperature, their output voltage and current become uns, and the output voltage of a single photovoltaic panel is considerably low. As a result, Boost circuits are needed for voltage boosting. PID controller is commonly used for Boost converter because it can effectively control the controlled object according to the characteristics of the controlled object. However, when the controlled object is complex and variable, the appropriate parameters are hardly to be selected by experience, and the fixed controller parameters may lead to unexpected performances under different working conditions. Here, a genetic algorithm combined with BP neural network PID control (GA-BPPID) is proposed to improve both dynamic and anti-interference performances of Boost circuit by introducing the global optimization ability of genetic algorithm and the adaptive adjustment characteristics of BP neural network. System modelling and detailed controller design procedures are provided. Finally, the theoretical analysis and controller design are validated by simulation results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3449456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact