The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L_1 + L_2 - partial_t, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L_1 - partial_ t and L_2 - partial_t. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hormander's 1967 groundbreaking paper on hypoellipticity.

Heat Kernels for a Class of Hybrid Evolution Equations

Garofalo, N;Tralli, G
2023

Abstract

The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L_1 + L_2 - partial_t, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L_1 - partial_ t and L_2 - partial_t. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hormander's 1967 groundbreaking paper on hypoellipticity.
2023
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1431950819.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3449175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact