We describe an efficient photocatalytic procedure for the direct iodosulfonylation of terminal olefins 3 with α-iodo phenylsulfones 4. Specifically, the process uses the simple, robust, and fully recyclable phenol derivative 6e as the precatalytic system and occurs with visible-light irradiation (450 nm). Mechanistic investigations proved the key role of the in situ generated photocatalyst, namely phenolate anion 7e, which has shown high catalytic activity and considerable stability toward the operating conditions. Importantly, this photocatalytic transformation provides a wide variety of densely functionalized alkyl iodides 5 (23 examples, up to 95% yield). Finally, the synthetic potential of this photochemical transformation was demonstrated by scaling up the process under microfluidic conditions (up to 0.67 mmol h-1) while accessing a series of relevant product manipulations.

Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins

Rosso C.;Barison G.;Costa P.;Bonchio M.;Dell'Amico L.
;
2022

Abstract

We describe an efficient photocatalytic procedure for the direct iodosulfonylation of terminal olefins 3 with α-iodo phenylsulfones 4. Specifically, the process uses the simple, robust, and fully recyclable phenol derivative 6e as the precatalytic system and occurs with visible-light irradiation (450 nm). Mechanistic investigations proved the key role of the in situ generated photocatalyst, namely phenolate anion 7e, which has shown high catalytic activity and considerable stability toward the operating conditions. Importantly, this photocatalytic transformation provides a wide variety of densely functionalized alkyl iodides 5 (23 examples, up to 95% yield). Finally, the synthetic potential of this photochemical transformation was demonstrated by scaling up the process under microfluidic conditions (up to 0.67 mmol h-1) while accessing a series of relevant product manipulations.
2022
File in questo prodotto:
File Dimensione Formato  
rosso-et-al-2022-unveiling-the-synthetic-potential-of-substituted-phenols-as-fully-recyclable-organophotoredox.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3448236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact