The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows probing of the neurophysiology of any neocortical brain area in vivo with millisecond accuracy. TMS-EEG is particularly unique compared with other available neurophysiological methods, as it can measure the state and dynamics of excitatory and inhibitory systems separately. Because of these capabilities, TMS-EEG responses are sensitive to the brain state, and the responses are influenced by brain maturation and ageing, making TMS-EEG a suitable method to study age-specific pathophysiology. In this review, we outline the TMS-EEG measurement procedure, the existing methods used for characterising TMS-EEG responses and the challenges associated with identifying the responses. We also summarise the findings thus far on how TMS-EEG responses change across the lifespan and the TMS-EEG features that separate typical and atypical brain maturation and ageing. Finally, we give an overview of the gaps in current knowledge to provide directions for future studies.
TMS-EEG responses across the lifespan: Measurement, methods for characterisation and identified responses
Ferreri F.;
2022
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows probing of the neurophysiology of any neocortical brain area in vivo with millisecond accuracy. TMS-EEG is particularly unique compared with other available neurophysiological methods, as it can measure the state and dynamics of excitatory and inhibitory systems separately. Because of these capabilities, TMS-EEG responses are sensitive to the brain state, and the responses are influenced by brain maturation and ageing, making TMS-EEG a suitable method to study age-specific pathophysiology. In this review, we outline the TMS-EEG measurement procedure, the existing methods used for characterising TMS-EEG responses and the challenges associated with identifying the responses. We also summarise the findings thus far on how TMS-EEG responses change across the lifespan and the TMS-EEG features that separate typical and atypical brain maturation and ageing. Finally, we give an overview of the gaps in current knowledge to provide directions for future studies.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.