Given a sufficiently symmetric domain Ω⋐R2, for any k∈N∖{0} and β>4πk we construct blowing-up solutions (uε)⊂H01(Ω) to the Moser–Trudinger equation such that as ε↓0, we have ‖∇uε‖Ljavax.xml.bind.JAXBElement@57b4bd332→β, uε⇀u0 in H01 where u0 is a sign-changing solution of the Moser–Trudinger equation and uε develops k positive spherical bubbles, all concentrating at 0∈Ω. These 3 features (lack of quantization, non-zero weak limit and bubble clustering) stand in sharp contrast to the positive case (uε>0) studied by the second author and Druet [8].

Sign-changing blow-up for the Moser–Trudinger equation

Martinazzi L.;
2022

Abstract

Given a sufficiently symmetric domain Ω⋐R2, for any k∈N∖{0} and β>4πk we construct blowing-up solutions (uε)⊂H01(Ω) to the Moser–Trudinger equation such that as ε↓0, we have ‖∇uε‖Ljavax.xml.bind.JAXBElement@57b4bd332→β, uε⇀u0 in H01 where u0 is a sign-changing solution of the Moser–Trudinger equation and uε develops k positive spherical bubbles, all concentrating at 0∈Ω. These 3 features (lack of quantization, non-zero weak limit and bubble clustering) stand in sharp contrast to the positive case (uε>0) studied by the second author and Druet [8].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123621003700-main.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3447240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact