In this paper we prove the special bounded variation regularity of the gradient of a viscosity solution of the Hamilton-Jacobi equation ∂tu + H(t, x,Dxu) = 0 in φ ∪ [0, T] × Rn under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. This result extends the result of Bianchini, De Lellis, and Robyr obtained for a Hamiltonian H = H(Dxu) which depends only on the spatial gradient of the solution.

SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t, x)

Tonon D.
2012

Abstract

In this paper we prove the special bounded variation regularity of the gradient of a viscosity solution of the Hamilton-Jacobi equation ∂tu + H(t, x,Dxu) = 0 in φ ∪ [0, T] × Rn under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. This result extends the result of Bianchini, De Lellis, and Robyr obtained for a Hamiltonian H = H(Dxu) which depends only on the spatial gradient of the solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3445778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact