A model is proposed herein to investigate the incipient sliding of contacts in the presence of both friction and adhesion, where the interfacial response is modeled based on traction-separation laws. A Maugis-like parameter is defined to characterize the response in the tangential direction. Subsequently, the model is used to investigate the contact between a smooth cylinder and a flat body, where adhesion-friction interactions are strong. A range of behaviors are observed when a tangential displacement is imposed: When the parameter is low, the contact pressure exhibits a relatively constant profile; when it is high, a pressure spike is observed at the edge of the contact. This difference is caused by a significant interface compliance in the former case, which limits the amount of slip. The results for the mid-range values of the Maugis-like parameter can qualitatively replicate various experiments performed using polydimethylsiloxane (PDMS) balls.
Incipient sliding of adhesive contacts
Nicola L.
2022
Abstract
A model is proposed herein to investigate the incipient sliding of contacts in the presence of both friction and adhesion, where the interfacial response is modeled based on traction-separation laws. A Maugis-like parameter is defined to characterize the response in the tangential direction. Subsequently, the model is used to investigate the contact between a smooth cylinder and a flat body, where adhesion-friction interactions are strong. A range of behaviors are observed when a tangential displacement is imposed: When the parameter is low, the contact pressure exhibits a relatively constant profile; when it is high, a pressure spike is observed at the edge of the contact. This difference is caused by a significant interface compliance in the former case, which limits the amount of slip. The results for the mid-range values of the Maugis-like parameter can qualitatively replicate various experiments performed using polydimethylsiloxane (PDMS) balls.File | Dimensione | Formato | |
---|---|---|---|
unpaywall-bitstream-1619165119.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.