We show that, for every transitive permutation group (Formula presented.) of degree (Formula presented.), the largest abelian quotient of (Formula presented.) has cardinality at most (Formula presented.). This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl Praeger.
A subexponential bound on the cardinality of abelian quotients in finite transitive groups
Lucchini A.;Spiga P.
2021
Abstract
We show that, for every transitive permutation group (Formula presented.) of degree (Formula presented.), the largest abelian quotient of (Formula presented.) has cardinality at most (Formula presented.). This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl Praeger.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.