We show that, for every transitive permutation group (Formula presented.) of degree (Formula presented.), the largest abelian quotient of (Formula presented.) has cardinality at most (Formula presented.). This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl Praeger.

A subexponential bound on the cardinality of abelian quotients in finite transitive groups

Lucchini A.;Spiga P.
2021

Abstract

We show that, for every transitive permutation group (Formula presented.) of degree (Formula presented.), the largest abelian quotient of (Formula presented.) has cardinality at most (Formula presented.). This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl Praeger.
File in questo prodotto:
File Dimensione Formato  
Bulletin of London Math Soc - 2021 - Lucchini - A subexponential bound on the cardinality of abelian quotients in finite.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 125.16 kB
Formato Adobe PDF
125.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3444196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact