In many scientific disciplines datasets contain many more variables than observational units (so-called thick data). A common hypothesis of interest in this setting is the global null hypothesis of no difference in multivariate distribution between different experimental or observational groups. Several permutation-based nonparametric tests have been proposed for this hypothesis. In this paper we investigate the potential differences in performance between different methods used to test thick data. In particular we focus on an extension of the Nonparametric combination procedure (NPC) proposed by Pesarin and Salmaso, a rank-based approach by Ellis, Burchett, Harrar and Bathke, and a distance-based approach by Mielke. The effect of different combining procedures on the NPC is also explored. Finally, we illustrate the use of these methods on a real-life dataset.

Permutation testing for thick data when the number of variables is much greater than the sample size: recent developments and some recommendations

Ceccato R.;Salmaso L.;Arboretti R.;
2023

Abstract

In many scientific disciplines datasets contain many more variables than observational units (so-called thick data). A common hypothesis of interest in this setting is the global null hypothesis of no difference in multivariate distribution between different experimental or observational groups. Several permutation-based nonparametric tests have been proposed for this hypothesis. In this paper we investigate the potential differences in performance between different methods used to test thick data. In particular we focus on an extension of the Nonparametric combination procedure (NPC) proposed by Pesarin and Salmaso, a rank-based approach by Ellis, Burchett, Harrar and Bathke, and a distance-based approach by Mielke. The effect of different combining procedures on the NPC is also explored. Finally, we illustrate the use of these methods on a real-life dataset.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1756095991.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 838.41 kB
Formato Adobe PDF
838.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3443666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact