We consider the functional∫Ωg(∇u+X∗) dL2nwheregis convex andX∗(x,y)=2(−y,x)and we study the minimizers in BV(Ω) of the associated Dirichlet problem. We prove that,under the bounded slope condition on the boundary datum, and suitable conditions ong,there exists a unique minimizer which is also Lipschitz continuous. The assumptions ongallow to consider both the case with superlinear growth and the one with linear growth.Moreover neither uniform ellipticity nor smoothness ofgare assumed.

Lipschitz minimizers for a class of integral functionals under the bounded slope condition

Giulia Treu
2022

Abstract

We consider the functional∫Ωg(∇u+X∗) dL2nwheregis convex andX∗(x,y)=2(−y,x)and we study the minimizers in BV(Ω) of the associated Dirichlet problem. We prove that,under the bounded slope condition on the boundary datum, and suitable conditions ong,there exists a unique minimizer which is also Lipschitz continuous. The assumptions ongallow to consider both the case with superlinear growth and the one with linear growth.Moreover neither uniform ellipticity nor smoothness ofgare assumed.
2022
File in questo prodotto:
File Dimensione Formato  
DonLussardiPinamontiTreu_revised21-10-30.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 241.75 kB
Formato Adobe PDF
241.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3443229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact