We study the spread of an SIRS-type epidemic with vaccination on network. Starting from an exact Markov description of the model, we investigate the mean epidemic lifetime by providing a sufficient condition for fast extinction that depends on the model parameters and the topology of the network. Then, we pass to consider a first-order mean-field approximation of the exact model and its stability properties, by relying on the graph-theoretical notion of equitable partition. In the case of graphs possessing this kind of partition, we prove that the endemic equilibrium can be computed by using a lower-dimensional dynamical system. Finally, in the special case of regular graphs, we investigate the domain of attraction of the endemic equilibrium.

Some aspects of the Markovian SIRS epidemic on networks and its mean-field approximation

Ottaviano S.;
2021

Abstract

We study the spread of an SIRS-type epidemic with vaccination on network. Starting from an exact Markov description of the model, we investigate the mean epidemic lifetime by providing a sufficient condition for fast extinction that depends on the model parameters and the topology of the network. Then, we pass to consider a first-order mean-field approximation of the exact model and its stability properties, by relying on the graph-theoretical notion of equitable partition. In the case of graphs possessing this kind of partition, we prove that the endemic equilibrium can be computed by using a lower-dimensional dynamical system. Finally, in the special case of regular graphs, we investigate the domain of attraction of the endemic equilibrium.
File in questo prodotto:
File Dimensione Formato  
mma7079.pdf

Accesso riservato

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3443153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact