In this work we introduce a new bootstrap approach based on a result of Ramsey (1974) and on the Durbin-Levinson algorithm to obtain surrogate series from linear Gaussian processes with long range dependence. First we investigate properties of this type of bootstrap, then we apply the method to semi-parametric estimators of the long memory parameter. We find out that the performance of our bootstrap procedure is superior, in terms of MSE, to other established approaches.

A new bootstrap approach for Gaussian long memory time series.

Bordignon, Silvano;Bisaglia, Luisa;Cecchinato, Nedda
2006

Abstract

In this work we introduce a new bootstrap approach based on a result of Ramsey (1974) and on the Durbin-Levinson algorithm to obtain surrogate series from linear Gaussian processes with long range dependence. First we investigate properties of this type of bootstrap, then we apply the method to semi-parametric estimators of the long memory parameter. We find out that the performance of our bootstrap procedure is superior, in terms of MSE, to other established approaches.
File in questo prodotto:
File Dimensione Formato  
2006_6_20061215151309.pdf

accesso aperto

Licenza: Accesso gratuito
Dimensione 483.14 kB
Formato Adobe PDF
483.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact