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1 Introduction

Bootstrap methods are resampling techniques, introduced firstly by Efron (1979),
designed to assigne measures of accuracy to sample estimates. Theese techniques
allow the estimation of the sample distribution of almost any statistics using only
very simple methods. Independence and identical distribution of the data is the
main assumptions, so the use of bootstrap methods in time series must be very ju-
dicious since otherwise the time series structure may be lost. Among the numerous
bootstrap methods for time series existing in literature, we can mention the model-
based resampling, block resampling, phase scrambling (see Davison and Hinkley,
1997, for a review on this argument), sieve (Kreiss, 1992) and local bootstrap (Pa-
paroditis and Politis, 1999). Although all this methods work well with short-memory
time series (for example, with time series generated by ARMA processes), do not
seem adapt to time series generated by long-memory processes (like, for example,
ARFIMA processes).
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In this work, we propose a new method based on the empirical autocovariance
function and the Durbin-Levinson algorithm that seems to give satisfactory perfor-
mances especially with Gaussian long-memory processes. Then we apply this new
method to two estimators of the long memory parameter d: the GPH estimator pro-
posed by Geweke and Porter-Hudak (1983) and the local Whittle estimator proposed
by Robinson (1995a).

The results of an extensive Monte Carlo experiment show that with our approach
we are able to improve the performances of the considered estimators in terms of
standard deviation and MSE. Moreover, our approach is computationally fast and
simple to implement.

The plan of the paper is the following. In Section 2 we briefly recall long memory
processes and some common methods to estimate the long-memory parameter d.
Section 3 is dedicated to reviewing different existing bootstrap methods for time
series. Sections 4 and 5 present the new bootstrap method and its application to
long-memory estimators. Results and conclusions are reported in the last section.

2 Long memory processes

There exist different definitions of long memory processes. In particular, long mem-
ory can be expressed either in the time domain or in the frequency domain. In the
time domain, a stationary discrete time series is said to be long memory if its auto-
correlation function decays to zero like a power function. This definition implies that
the dependence between successive observations decays slowly as the number of lags
tends to infinity. On the other hand, in the frequency domain, a stationary discrete
time series is said to be long memory if its spectral density behaves like |ω|−d near
the 0 frequency, that is the spectral density is unbounded at low frequencies.

In this paper we consider one of the most popular long memory processes that
takes into account this particular behaviour of the autocorrelation and of the spectral
density function, i.e. the Autoregressive Fractionally Integrated Moving Average
process, ARFIMA(p, d, q) in the following, independently introduced by Granger
and Joyeux (1980) and Hosking (1981). This process simply generalizes the usual
ARIMA(p, d, q) process by assuming d to be fractional.

Let εt be a white noise process having E[ε2
t ] = σ2. The process {Xt, t ∈ Z} is

said to be an ARFIMA(p, d, q) process with d ∈ (−1/2, 1/2), if it is stationary and
satisfies the difference equation

Φ(B) ∆(B) (Xt − µ) = Θ(B) εt, (1)

where Φ(·) and Θ(·) are polynomials in the backward shift operator B of degree p and
q, respectively, ∆(B) = (1−B)d =

∑∞
j=0 πjB

j with πj = Γ(j − d)/[Γ(j + 1)Γ(−d)],
and Γ(·) is the gamma function.

If p = q = 0 the process {Xt, t ∈ Z} is called Fractionally Integrated Noise
and denoted by I(d). When d ∈ (0, 1/2) the ARFIMA(p, d, q) process is stationary
and the autocorrelation function decays to zero hyperbolically at a rate O(k2d−1),
where k denotes the lag. In this case we say that the process has a long-memory
behaviour. When d ∈ (−1/2, 0) the ARFIMA(p, d, q) process is a stationary process
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with intermediate memory. In the following we will concentrate on I(d) processes
with d ∈ (0, 1/2): for this range of values the process is stationary, invertible and
possesses long-range dependence. Moreover, we will assume for convenience and
without loss of generality that σ2 = 1 and µ = 0.

The estimation of the long-memory parameter d has been of interest to many
authors. Many estimators are well described in Beran (1994). In this paper three
of the most common will be considered. We will try to improve the semiparametric
estimators local Whittle and GPH, while the parametric Whittle is used as bench-
mark.

2.1 The Whittle estimator

Several theoretical and practical advantages are possessed by the frequency domain
approximate maximum likelihood method proposed by Fox and Taqqu (1986), also
called Whittle estimator. This estimator extends the results of Hannan (1973), who
applied Whittle’s method to the estimation of the parameters of ARMA models.
Fox and Taqqu’s result, later generalized by Dahlhaus (1989) to the exact maximum
likelihood estimator, is the basis of one of the most used methods for estimating
the long (and short, if both are present) memory parameters in Gaussian time se-
ries. Giraitis and Surgailis (1990) generalized the result of Fox and Taqqu in order
to prove the asymptotic normality of Whittle’s estimator without the Gaussianity
assumption.

The exact maximum likelihood estimator has the drawback of implying a large
computational burden and it might also cause computational problems when calcu-
lating the autocovariances needed to evaluate the likelihood function (Sowell, 1992).
These difficulties do not occur when using the Whittle estimator, which has the fur-
ther advantage of not requiring the estimation of the mean of the series (generally
unknown in practice). Besides, under some regularity assumptions (Fox and Taqqu,
1986; Dahlhaus, 1989) fulfilled by ARFIMA(p, d, q) processes, it is possible to prove
that the Whittle estimator has the same asymptotic distribution as the exact max-
imum likelihood estimator and it converges to the true values of the parameters at
the usual rate of n−1/2, where n is the length of the series. Eventually, for Gaussian
processes the Whittle estimator is asymptotically efficient in the sense of Fisher.

If the Whittle approximation to the log-likelihood function is used, the parameter
vector θ = (d, φ1, . . . , φp, θ1, . . . , θq) is estimated by minimizing with respect to θ
the estimated variance of the underlying white noise process:

σ̂2(θ) =
1
2π

n′∑
j=1

In(ωj)
f(ωj ,θ)

,

where n′ is the integer part of (n − 1)/2, In(ωj) denotes the periodogram of the
series, defined at the Fourier frequencies ωj = 2πj/n (j = 1, . . . , n′), and f(ωj ,θ)
indicates the spectral density of the ARFIMA process at the Fourier frequency ωj .

The drawback of this estimator is that it is necessary to assume the parametric
form of the spectral density to be known a priori. If the specified spectral density
function is not the correct one (as it is often the case) the estimated parameters may
be dramatically biased.
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2.2 The GPH estimator

This is one of the best known methods to estimate in a semi-parametric way the
fractional parameters d of long-range dependence behaviour. The advantage of this
method is that the specification of the model is not really necessary because the
only information we need is the behaviour of the spectral density near the origin.
Furthermore, the long-memory parameter can be estimated alone.

This method was first introduced by Geweke and Porter-Hudak (1983) for the
Gaussian case when d belongs to (−1/2, 0) and then it was developed by Robinson
(1995b).

Assume that the process {Xt}, t = 1, 2, . . . , n, is an ARFIMA(p, d, q) model as
defined in equation (1), then we can observe that the spectral density of this model
is proportional to (4 sin2(ω/2))−d near the origin, i.e.

f(ω) ∼ cf (4 sin2(ω/2))−d, (2)

when ω tends to 0. Since the periodogram I(ω) is an asymptotically unbiased esti-
mate of the spectral density, that is:

lim
ω→0

E[I(ω)] = f(ω)

it is possible to estimate d applying the least squares method to the following equa-
tion

log(I(ωj,N )) = log{σ2fε(0)2π} − d log(4 sin2(ωj/2)) + uj (3)

where uj , j = 1, 2, . . . , n∗ are i.i.d. error terms, ωj,N = (2πj/n), j = 1, 2, . . . , n∗ and
n∗ is the integer part of (n− 1)/2.

Equation (2) is an asymptotic relation that holds only in a neighbourhood of the
origin, thus if we use this relation from all periodogram ordinates (−π < ω < π)
the estimator of d can be highly biased. Geweke and Porter-Hudak (1983) proposed
to consider only the first

√
n frequencies for the estimate since d is the memory

parameter and influences mostly the lower frequencies. The higher frequencies are
influenced by the short memory ARMA part.

An interesting advantage with respect to the Whittle is that the GPH estimator
can be easily applied without bothering about the ARMA part of the process. The
main drawback of this estimator is its high standard deviation. Moreover Agiak-
loglou et al. (1993) showed that it is biased in presence of ARMA parameter near
the non-stationary area.

2.3 The local Whittle estimator

The local Whittle estimator is another semiparametric estimator of the memory
parameter d developed by Robinson (1995a) following a suggestion of Künsch (1987).
Robinson (1995a) demonstrated that the local Whittle estimator is asymptotically
more efficient than the GPH in the stationary case, although it is not defined in
closed form and numerical optimization methods are needed to calculate it.
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It can be found minimizing the following expression:

R(d) = log

 1
m

m∑
j=1

ωd
j Ij

− d
1
m

m∑
j=1

log ωd
j , (4)

where Ij = I(ωj) is the periodogram at the Fourier frequencies and m is an integer
less than n/2.

Under slight conditions Robinson (1995a) showed that this estimator is weakly
consistent. Moreover, under stronger conditions, he proved the asymptotic normality
even if the convergence rate is slower than in the Whittle case. The rate depends on
m1/2, the number of frequencies considered in the estimate. Usually it is considered
a value of m = b

√
nc. Thus, the local Whittle estimate is much less efficient than

parametric estimates, like, for example, the Whittle one, when they happen to be
based on a correct model, but it is asymptotically more efficient than the GPH
estimate.

3 Bootstrap for time series

Bootstrap methods were introduced firstly by Efron (1979) and it has become a
popular statistical tool caused by its easiness of use combined to the advent of
strong calculators. For a review of the bootstrap methodology, see Hinkley (1988);
monographs on the topic include Efron and Tibshirani (1993) and Davison and
Hinkley (1997).

Special care is needed when applying bootstrap techniques to time series analy-
sis, since the correlation structure among the variables is possibly complicated and
simple methods designed for independent and identically distributed variables are
not appropriate. Li and Maddala (1996) discussed the difficulties found in the
use of bootstrap for time series models, and gave some guidelines. More recently,
Bühlmann (2002) and Politis (2003) review and compare some bootstrap methods
for time series illuminating some theoretical aspects of the procedure as well as their
performances on finite-sample data. In spite of the great number of papers on boot-
strap techniques for time series, the problem is still open since these techniques are
not always satisfactory especially if the time series exhibits long range dependence.

In this section we define the bootstrap methods used when data present long
memory behaviour. We do not consider parametric bootstrap since it needs to know
the correct model to work well.

3.1 Sieve bootstrap

The sieve bootstrap was first introduced by Kreiss (1992) and then developed by
Bühlmann (1997). This method is based on the idea of sieve approximation: it
approximates a general linear, invertible process by a finite autoregressive model
with order increasing with the series length, and resampling from the approximated
autoregressions. By viewing such autoregressive approximations as a sieve for the
underlying infinite-order process, the bootstrap procedure may still be regarded as
a non parametric one. Moreover, this method is computationally simple and yields
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a (conditionally) stationary bootstrap sample that does not exhibit artefacts in the
dependence structure. In a very recent paper Kapetanios and Psaradakis (2006)
study the properties of the sieve bootstrap for a class of linear processes with long
range dependence. The authors established the first order asymptotic validity of the
sieve bootstrap in the case of the sample mean and sample autocovariances, but the
results of a Monte Carlo experiment are disappointing.

Given the sample X1, X2, . . . , Xn, the scheme for the sieve bootstrap is as follows.
Fit an AR(p(n)) model to the data choosing the optimal p using the AIC crite-

rion. It is important to note that we fit the autoregressive process with increasing
order p(n) as the sample size n increases. Estimate the residuals:

ε̂t,n =
p(n)∑
j=0

φ̂j,n(Xt−j − X̄), φ̂0,n = 1 (t = p + 1, . . . , n), (5)

where x̄ is the sample mean and φ̂j,n are the autoregressive coefficients. Before
bootstrapping the residuals, they have to be centred. At last each bootstrap replicate
can be calculated using the following recursion:

p(n)∑
j=0

φ̂j,n(X∗
t−j − X̄) = ε̂∗t (6)

where ε̂∗t are the bootstrapped residuals.

3.2 The local bootstrap

Paparoditis and Politis (1999) have proposed the non-parametric local bootstrap
for weakly dependent stationary processes. It produces surrogate versions of the
periodogram I(ωj) of the observed process {Xt} so that it is useful when the aim
is to make inference through the spectrum (e.g. confidence interval for the memory
parameter d in case of long-memory).

Silva et al. (ress) apply the local bootstrap to the estimation of the long mem-
ory parameter d and, via simulations, compare its performance with that of other
bootstrap approaches. The authors established the efficacy of the local bootstrap in
terms of low bias, short confidence intervals and low CPU times.

Given the data X1, · · · , Xn, the local bootstrap algorithm that generates boot-
strap replicates I∗x(ωj), j = 0, 1, · · · , n∗ of the periodogram can then be described
as follows.

1. Select a resampling width kn where kn = k(n) ∈ N and kn ≤ [n/2].

2. Define i.i.d discrete random variables J1, J2, · · · , JN taking values in the set
{−kn,−kn + 1, · · · , kn} with probability pkn,s, i.e. P (Ji = s) = pkn,s for
s = 0,±1, · · · ,±kn such that pkn,s = pkn,−s.

3. The bootstrap periodogram is then defined by I∗X(ωj) = IX(ωJj+j) for j =
1, 2, · · · , n/2, I∗X(ωj) = I∗X(−ωj) for ωj ≤ 0 and for ωj = 0 we set I∗X(0) = 0.
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Paparoditis and Politis (1999) have showed that the local bootstrap is asymp-
totically valid but some care should be taken for the choice of the resampling widths
kn, in the case of a finite sample size n. Following a suggestion of Silva et al. (ress),
in this paper we will consider kn = 1 with uniform sample probability since the
results are very similar when kn = 2.

4 The new bootstrap method

The method we present is based on the following theorem (Ramsey, 1974).

Theorem 4.1 Let Xt be a Gaussian, wide-sense stationary time series with mean
µ and variance γ0. Then the conditional distribution of Xt given X0, · · · , Xt−1 is
Gaussian with mean and variance given by

mt = E(Xt|X0, · · · , Xt−1) =
t∑

j=1

φtjXt−j ,

vt = V ar(Xt|X0, · · · , Xt−1) = γ0

t∏
j=1

(1− φjj), (7)

where φjj is the jth partial autocorrelation and φtj is the jth autoregressive coefficient
in an autoregressive fit of order t.

The coefficients φtj and φjj can easily be obtained by the Durbin-Levinson (see
Brockwell and Davis, 1991) recursion:

φtt = Nt/Dt (8)
φtj = φt−1,j − φttφt−1,t−j , j = 1, · · · , n− 1, (9)

where

N0 = 0
D0 = 1

Nt = ρt −
t−1∑
j=1

φt−1,jρt−j

Dt = Dt−1 −N2
t−1/Dt−1.

and ρt is the autocorrelation function of Xt at lag t.
The hypotheses of Theorem 4.1 admit all processes with an MA-infinite represen-

tation, e.g. autoregressive moving average processes and ARFIMA with 0 ≤ d < 1/2.
Moreover the sample autocorrelations are consistent with the theoretical autocorre-
lations.

Instead of using a theoretical autocovariance function, our idea is to use the
empirical autocorrelation function of a time series to generate bootstrap time series
through the conditional mean, the conditional variance and the Durbin-Levinson
algorithm. From now on we will call shortly this new procedure ACF bootstrap.
The steps to generate a bootstrap series are:
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1. obtain the empirical autocorrelation function, ρ̂t, from the observed time series
Xt;

2. generate a starting value of X∗
0 from an N(0, v0) distribution where v0 is the

sample variance of Xt;

3. perform the Durbin-Levinson recursion for φtt and φtj in (8) and (9) based on
the empirical autocorrelation function; calculate vt based on equation (7) and
m∗

t as follows

m∗
t = E(Xt|X0, · · · , Xt−1) =

t∑
j=1

φtjX
∗
t−j ,

thus m∗
t is based on the past values of the bootstrap series and the observed

autocovariance function of the original one;

4. generate the bootstrap replicates of Xt from N(m∗
t , vt).

4.1 Properties

The surrogate series X∗
t,b, b = 1, · · · , B, with B number of bootstrap replicates,

have the following main properties:

• the autocovariance function is asymptotically unbiased:

E[γ∗k,b] = E[X∗
t X∗

t−k] = EE[γ∗k,b|{Xt}] = EE[X∗
t X∗

t−k|{Xt}] =

E

[(
n− k

n

)
γ̂k

]
=

(
n− k

n

)
E[γ̂k] =

(
n− k

n

)2

γk;

• since the spectrum transformation is a linear operator, the surrogate spectra
has the same property:

E [I∗b (ωj)] = EE [I∗b (ωj)|{Xt}] =

E

 n−1∑
k=−(n−1)

γ∗k,b cos ωk

 =
n−1∑

k=−(n−1)

(
n− k

n

)2

γk cos ωk;

• if we consider each bootstrap series X∗
t,b as a single observation, we can notice

that they are independent and identically distributed conditionally to the ob-
served series Xt. Besides, the i.i.d. property is preserved if we consider any
transformation f(X∗

t,b) of the data.

The third property is very promising to be exploited to estimate the spectrum
of a linear model. Thus we present a new estimator of the spectrum as follows

Ī∗(ωj) =
1
B

B∑
l=1

I∗b (ωj). (10)
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It is easy to show that Ī∗(ωj) is asymptotically unbiased. In fact, if, without loss
of generality, we will assume that the observed process Xt is zero mean, it is easy
to show that the expected value of Ī∗(ωj) is:

E
[
Ī∗(ωj)

]
= E

[
1
B

B∑
b=1

I∗b (ωj)

]
=

1
B

B∑
b=1

E

 n−1∑
−(n−1)

γ̂∗k,b cos ωjk

 =

n−1∑
−(n−1)

E
[
γ̂∗k,b

]
cos ωjk =

n−1∑
−(n−1)

(
n− k

n

)2

γk cos ωk.

5 Monte Carlo results

In this section, to assess the validity of the ACF bootstrap method with respect to
the existing methods in literature, we conduct experiments with simulated data. In
particular, we apply the presented method on long memory time series. We used
the ACF, the sieve and the local bootstrap to estimate the long-memory parameter
d by the GPH and the local Whittle methods.

We suggest the following versions of the estimators,

d̂GPH =
1
B

B∑
b=1

d̂b,GPH, (11)

for the GPH and

d̂lW =
1
B

B∑
b=1

d̂b,lW, (12)

for the local Whittle, where d̂b,GPH and d̂b,lW are the values observed in the l−th
surrogate series. 1

The functions we use are written in R language (see RDevelopmentCoreTeam,
2006) and are available upon request by the authors.

In the simulation study we consider series generated by I(d) models for different
values of the long-memory parameter, i.e. d = 0.1, 0.2, 0.3, 0.4, 0.45. The considered
sample sizes are T = 300, 500, 1000.

The series are generated using the recursive Durbin-Levinson algorithm (see
Brockwell and Davis, 1991). For each model we consider S = 1000 independent re-
alizations. The number of bootstrap replications is B = 1000. For a given estimation

1At the beginning of our work we considered also a version of the GPH estimator based on the
spectrum estimate given in (10). In this case the regression equation become:

log{Ī∗(ωj)} = log{σ2fε(0)2π} − d log{4 sin2(ωj/2)}+ u. (13)

The estimator and its standard deviation are calculated following the simple rules of a linear re-
gression model. It is possible to show that the two bootstrap versions of the GPH estimator are
asymptotically equivalent thus we will concentrate on the first one.
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method we calculate the Monte Carlo estimates, that is

d̂ =
1
S

S∑
i=1

d̂i,

where d̂i are the estimated values for a single realization together with the standard
error (s.e.) and the mean square error (MSE). For GPH and local Whittle estimators
we also calculate the bootstrap estimates

d̂∗ =
1
S

S∑
i=1

d̂∗i (14)

where d∗i is calculated as in (11) and (12).
The performances of ACF bootstrap are compared with sieve and local bootstrap

in terms of the s.e. and the MSE. The results are presented in tables 1-4 where also
results on the Whittle method (used as a benchmark) are included. Moreover, the
tables report results on d̂∗ (mean), standard error of d̂∗ (s.e.) and MSE of d̂∗ (mse)
for the two considered estimators and for the three bootstrap methods.

The Monte Carlo estimates are in accordance with known results (see, for exam-
ple Bisaglia and Gugan, 1998). As we expected, the Whittle estimator outperforms
largely all the others, since it is a parametric estimator in the best conditions (the
estimates are based on the correct parametric model).

Comparing the bootstrap methods it is evident that the sieve bootstrap ex-
hibits the worst performance and we think that it can not reproduce long-memory
processes. With regard to the other two methods, the ACF is a slightly more bi-
ased but the standard deviation and the mean square error are always smaller with
respect to the local bootstrap. Both of them give satisfactory results compared to
the same estimators in the Monte Carlo simulations. By increasing the sample sizes
also the performances of these two methods increase.

Table 4 reports the gain, calculated in terms of percentage, when using ACF
and local bootstrap with respect to the Monte Carlo version, for the GPH and local
Whittle bootstrap estimator. The following is the formula:

GAIN% =
d̂− d̂∗i

d̂
× 100

where i = GPH, lW.
The results confirm that the gain is always bigger for the ACF bootstrap.
In conclusion we can say that our method is promising with long-memory processes.

It can help to obtain better results with some semi-parametric estimators of the
memory parameter d, like the GPH and the local Whittle, that usually have high
standard deviation. Moreover the ACF bootstrap outperforms the other two boot-
strap methods we considered. The method is open to future developments with
confidence interval, hypothesis testing and theoretic results.
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