We examine mean field control problems on a finite state space, in continuous time and over a finite time horizon. We characterize the value function of the mean field control problem as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation in the simplex. In absence of any convexity assumption, we exploit this characterization to prove convergence, as N grows, of the value functions of the centralized N-agent optimal control problem to the limit mean field control problem value function, with a convergence rate of order 1/root N. Then, assuming convexity, we show that the limit value function is smooth and establish propagation of chaos, i.e. convergence of the N-agent optimal trajectories to the unique limiting optimal trajectory, with an explicit rate.
Finite state N-agent and mean field control problems
Cecchin, Alekos
2021
Abstract
We examine mean field control problems on a finite state space, in continuous time and over a finite time horizon. We characterize the value function of the mean field control problem as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation in the simplex. In absence of any convexity assumption, we exploit this characterization to prove convergence, as N grows, of the value functions of the centralized N-agent optimal control problem to the limit mean field control problem value function, with a convergence rate of order 1/root N. Then, assuming convexity, we show that the limit value function is smooth and establish propagation of chaos, i.e. convergence of the N-agent optimal trajectories to the unique limiting optimal trajectory, with an explicit rate.File | Dimensione | Formato | |
---|---|---|---|
Finite state N-agent and mean field control problems. COCV.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
682.83 kB
Formato
Adobe PDF
|
682.83 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.