The main purpose of this work is to provide an efficient scheme for constructing kernel-based reduced interpolation models. In the existing literature such problems are mainly addressed via the well-established knot insertion or knot removal schemes. Such iterative strategies are usually quite demanding from a computational point of view and our goal is to study an efficient implementation for data removal approaches, namely efficient reduced basis algorithm (ERBA). Focusing on kernel-based interpolation, the algorithm makes use of two iterative rules for removing data. The former, called ERBA-r, is based on classical residual evaluations. The latter, namely ERBA-p, is independent of the function values and relies on error bounds defined by the power function. In both cases, inspired by the so-called extended Rippa’s algorithm, our ERBA takes advantage of a fast implementation.
Efficient Reduced Basis Algorithm (ERBA) for Kernel-Based Approximation
Marchetti F.
;Perracchione E.
2022
Abstract
The main purpose of this work is to provide an efficient scheme for constructing kernel-based reduced interpolation models. In the existing literature such problems are mainly addressed via the well-established knot insertion or knot removal schemes. Such iterative strategies are usually quite demanding from a computational point of view and our goal is to study an efficient implementation for data removal approaches, namely efficient reduced basis algorithm (ERBA). Focusing on kernel-based interpolation, the algorithm makes use of two iterative rules for removing data. The former, called ERBA-r, is based on classical residual evaluations. The latter, namely ERBA-p, is independent of the function values and relies on error bounds defined by the power function. In both cases, inspired by the so-called extended Rippa’s algorithm, our ERBA takes advantage of a fast implementation.File | Dimensione | Formato | |
---|---|---|---|
Efficient_Reduced_Basis_Algorithm_(ERBA)_For_Kernel_Based_Approximation.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.