Multiple landslide events are common around the globe. They can cause severe damage to both human lives and infrastructures. Although a huge quantity of research has been shaped to address rapid mapping of landslides by optical Earth Observation (EO) data, various gaps and uncertainties are still present when dealing with cloud obscuration and 24/7 operativity. To address the issue, we explore the usage of SAR data over the eastern Iburi sub-prefecture of Hokkaido, Japan. In the area, about 8000 co-seismic landslides were triggered by an Mw 6.6 earthquake on 6 September 2018, at 03.08 local time (JST). In the following study, we modify a Deep Learning (DL) convolutional neural network (CNN) architecture suited for pixel-based classification purposes, the so-called Attention U-Net (Attn-U-Net) and we employ it to evaluate the potential of bi-and tri-temporal SAR amplitude data from the Sentinel-1 satellite and slope angle to map landslides even under thick cloud cover. Four different datasets, composed of two different band combinations per two satellite orbits (ascending and descending) are analyzed. Moreover, the impact of augmentations is evaluated independently for each dataset. The models’ predictions are compared against an accurate landslide inventory obtained by manual mapping on pre-and post-event PlanetScope imagery through F1-score and other common metrics. The best result was yielded by the augmented ascending tri-temporal SAR composite image (61% F1-score). Augmentations have a positive impact on the ascending Sentinel-1 orbit, while metrics decrease when augmentations are applied on descending path. Our findings demonstrate that combining SAR data with other data sources may help to map landslides quickly, even during storms and under deep cloud cover. However, further investigations and improvements are still needed, this being one of the first attempts in which the combination of SAR data and DL algorithms are employed for landslide mapping purposes.

Rapid Mapping of Landslides on SAR Data by Attention U-Net

Nava L.;Bhuyan K.;Meena S. R.;Catani F.
2022

Abstract

Multiple landslide events are common around the globe. They can cause severe damage to both human lives and infrastructures. Although a huge quantity of research has been shaped to address rapid mapping of landslides by optical Earth Observation (EO) data, various gaps and uncertainties are still present when dealing with cloud obscuration and 24/7 operativity. To address the issue, we explore the usage of SAR data over the eastern Iburi sub-prefecture of Hokkaido, Japan. In the area, about 8000 co-seismic landslides were triggered by an Mw 6.6 earthquake on 6 September 2018, at 03.08 local time (JST). In the following study, we modify a Deep Learning (DL) convolutional neural network (CNN) architecture suited for pixel-based classification purposes, the so-called Attention U-Net (Attn-U-Net) and we employ it to evaluate the potential of bi-and tri-temporal SAR amplitude data from the Sentinel-1 satellite and slope angle to map landslides even under thick cloud cover. Four different datasets, composed of two different band combinations per two satellite orbits (ascending and descending) are analyzed. Moreover, the impact of augmentations is evaluated independently for each dataset. The models’ predictions are compared against an accurate landslide inventory obtained by manual mapping on pre-and post-event PlanetScope imagery through F1-score and other common metrics. The best result was yielded by the augmented ascending tri-temporal SAR composite image (61% F1-score). Augmentations have a positive impact on the ascending Sentinel-1 orbit, while metrics decrease when augmentations are applied on descending path. Our findings demonstrate that combining SAR data with other data sources may help to map landslides quickly, even during storms and under deep cloud cover. However, further investigations and improvements are still needed, this being one of the first attempts in which the combination of SAR data and DL algorithms are employed for landslide mapping purposes.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3441995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
  • OpenAlex ND
social impact