A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism for temporal plans that models controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds CSTNUDs to model, validate and execute some temporal plans of interest. In this paper, we investigate a bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). We provide a prototype implementation and we test it with a set of artificial data. Finally, we elaborate on consistency and controllability of mined networks.
Mining CSTNUDs significant for a set of traces is polynomial
Zavatteri, Matteo
;
2021
Abstract
A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism for temporal plans that models controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds CSTNUDs to model, validate and execute some temporal plans of interest. In this paper, we investigate a bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). We provide a prototype implementation and we test it with a set of artificial data. Finally, we elaborate on consistency and controllability of mined networks.| File | Dimensione | Formato | |
|---|---|---|---|
|
Information-and-Computation-2021-Mining-CSTNUD.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
438.51 kB
Formato
Adobe PDF
|
438.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




