We study a p-adic Maass–Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].
A p-adic Maass–Shimura operator on Mumford curves
Longo M.
2023
Abstract
We study a p-adic Maass–Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Longo - A p-adic Maass–Shimura operator on Mumford curves - s40316-022-00193-x.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
|
Longo - A p-adic Maass_Shimura operator.pdf
Accesso riservato
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




