We study a p-adic Maass–Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].

A p-adic Maass–Shimura operator on Mumford curves

Longo M.
2023

Abstract

We study a p-adic Maass–Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].
File in questo prodotto:
File Dimensione Formato  
Longo - A p-adic Maass–Shimura operator on Mumford curves - s40316-022-00193-x.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3441442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact