In this paper we propose a notion of stability, which we call ε- N-stability, for systems of particles interacting via Newton’s gravitational potential, and orbiting a much bigger object. For these systems the usual thermodynamical stability condition, ensuring the possibility to perform the thermodynamical limit, fails, but one can use as relevant parameter the maximum number of particles N that guarantees the ε- N-stability. With some judicious but not particularly optimized estimates, borrowed from the classical theory of equilibrium statistical mechanics, we show that our model has a good fit with the data observed in the Solar System, and it gives a reasonable interpretation of some of its global properties.

Lonely Planets and Lightweight Asteroids: A Statistical Mechanics Model for the Planetary Problem

Pinzari G.
Conceptualization
;
2022

Abstract

In this paper we propose a notion of stability, which we call ε- N-stability, for systems of particles interacting via Newton’s gravitational potential, and orbiting a much bigger object. For these systems the usual thermodynamical stability condition, ensuring the possibility to perform the thermodynamical limit, fails, but one can use as relevant parameter the maximum number of particles N that guarantees the ε- N-stability. With some judicious but not particularly optimized estimates, borrowed from the classical theory of equilibrium statistical mechanics, we show that our model has a good fit with the data observed in the Solar System, and it gives a reasonable interpretation of some of its global properties.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1517759353.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 451.84 kB
Formato Adobe PDF
451.84 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3441231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact