We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. The main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.
K-mean convex and K-outward minimizing sets
Cesaroni, A;
2022
Abstract
We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. The main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IFB22cesnov.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
5.7 MB
Formato
Adobe PDF
|
5.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.