We consider the fractional mean curvature flow of entire Lipschitz graphs. We provide regularity results, and we study the long time asymptotics of the flow. In particular we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation of a cone, the evolution asymptotically approaches an expanding self-similar solution. We also prove stability of hyperplanes and of convex cones in the unrescaled setting.
Fractional mean curvature flow of Lipschitz graphs
Cesaroni A.;
2023
Abstract
We consider the fractional mean curvature flow of entire Lipschitz graphs. We provide regularity results, and we study the long time asymptotics of the flow. In particular we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation of a cone, the evolution asymptotically approaches an expanding self-similar solution. We also prove stability of hyperplanes and of convex cones in the unrescaled setting.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cnMA23.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
936.4 kB
Formato
Adobe PDF
|
936.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.