We consider the fractional mean curvature flow of entire Lipschitz graphs. We provide regularity results, and we study the long time asymptotics of the flow. In particular we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation of a cone, the evolution asymptotically approaches an expanding self-similar solution. We also prove stability of hyperplanes and of convex cones in the unrescaled setting.

Fractional mean curvature flow of Lipschitz graphs

Cesaroni A.;
2023

Abstract

We consider the fractional mean curvature flow of entire Lipschitz graphs. We provide regularity results, and we study the long time asymptotics of the flow. In particular we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation of a cone, the evolution asymptotically approaches an expanding self-similar solution. We also prove stability of hyperplanes and of convex cones in the unrescaled setting.
File in questo prodotto:
File Dimensione Formato  
cnMA23.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 936.4 kB
Formato Adobe PDF
936.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3440761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact