Circular RNAs (circRNAs) are stable RNA molecules generated by backsplicing that play regulatory functions through interaction with other RNA and proteins, as well as by encoding peptides. Dysregulation of circRNA expression can drive cancer development and progression with different mechanisms. CircRNAs are currently regarded as extremely attractive molecules in cancer research for the identification of new and possibly targetable disease regulatory networks and for the development of biomarkers for cancer diagnosis, prognosis definition, and monitoring. Using specific experimental and computational protocols, circRNAs can be identified through RNA-seq by spotting the reads spanning backsplice junctions, which are specific to circular molecules. In this chapter, we report a state-of-the-art computational protocol for a genome-wide analysis of circRNAs from RNA-seq data, which considers circRNA detection, quantification, and differential expression testing. Finally, we indicate how to determine circular transcript sequences and the resources for an in silico functional characterization of circRNAs.
Bioinformatic Analysis of Circular RNA Expression
Gaffo E.;Buratin A.;Dal Molin A.;Bortoluzzi S.
2021
Abstract
Circular RNAs (circRNAs) are stable RNA molecules generated by backsplicing that play regulatory functions through interaction with other RNA and proteins, as well as by encoding peptides. Dysregulation of circRNA expression can drive cancer development and progression with different mechanisms. CircRNAs are currently regarded as extremely attractive molecules in cancer research for the identification of new and possibly targetable disease regulatory networks and for the development of biomarkers for cancer diagnosis, prognosis definition, and monitoring. Using specific experimental and computational protocols, circRNAs can be identified through RNA-seq by spotting the reads spanning backsplice junctions, which are specific to circular molecules. In this chapter, we report a state-of-the-art computational protocol for a genome-wide analysis of circRNAs from RNA-seq data, which considers circRNA detection, quantification, and differential expression testing. Finally, we indicate how to determine circular transcript sequences and the resources for an in silico functional characterization of circRNAs.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.