Polycrystalline cerium oxide thin films (15 nm) deposited on a glassy carbon substrate were used as an electrode in a mediator-free, non-enzymatic electrochemical sensor for hydrogen peroxide. The electrode surface was characterized by X-ray photoelectron spectroscopy, resonant photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. The electrode sensitivity, detection limit and pH range of sensor stability were determined by applying electrochemical techniques: cyclic voltammetry and chronoamperometry. It was found that the sensor reactivity to H2O2 is directly related to the presence of electroactive cerium centres of 3+ character on the electrode surface. The Michaelis–Menten mechanism of catalase-like activity of ceria film is suggested as an explanation of the data and discussed. The results confirmed the sensing abilities of technologically well-accessible nanostructured cerium oxide films for hydrogen peroxide detection without using a mediator, i.e. the enzymatic properties of CeO2/GC electrode.

Electrochemical activity of the polycrystalline cerium oxide films for hydrogen peroxide detection

Zanut A.;
2019

Abstract

Polycrystalline cerium oxide thin films (15 nm) deposited on a glassy carbon substrate were used as an electrode in a mediator-free, non-enzymatic electrochemical sensor for hydrogen peroxide. The electrode surface was characterized by X-ray photoelectron spectroscopy, resonant photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. The electrode sensitivity, detection limit and pH range of sensor stability were determined by applying electrochemical techniques: cyclic voltammetry and chronoamperometry. It was found that the sensor reactivity to H2O2 is directly related to the presence of electroactive cerium centres of 3+ character on the electrode surface. The Michaelis–Menten mechanism of catalase-like activity of ceria film is suggested as an explanation of the data and discussed. The results confirmed the sensing abilities of technologically well-accessible nanostructured cerium oxide films for hydrogen peroxide detection without using a mediator, i.e. the enzymatic properties of CeO2/GC electrode.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3440355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
  • OpenAlex ND
social impact