With the aim of overcoming the well-known limitations of platinum-based antineoplastic drugs, recent efforts have focused on the development of new anticancer agents containing metals other than platinum. Among these agents, organopalladium compounds have received significant recent attention due to their generally high stability under physiological conditions. A significant number of these compounds have shown promising in vitro and in vivo antiproliferative activity toward several cisplatin-sensitive and cisplatin-resistant tumors and have sometimes exhibited a different mechanism of action compared to platinum-based drugs. In this review, recent advances in the field of organopalladium compounds as potential anticancer agents are discussed.

A critical review of palladium organometallic anticancer agents

Scattolin T.;
2021

Abstract

With the aim of overcoming the well-known limitations of platinum-based antineoplastic drugs, recent efforts have focused on the development of new anticancer agents containing metals other than platinum. Among these agents, organopalladium compounds have received significant recent attention due to their generally high stability under physiological conditions. A significant number of these compounds have shown promising in vitro and in vivo antiproliferative activity toward several cisplatin-sensitive and cisplatin-resistant tumors and have sometimes exhibited a different mechanism of action compared to platinum-based drugs. In this review, recent advances in the field of organopalladium compounds as potential anticancer agents are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3440314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 87
  • OpenAlex ND
social impact