Cellular functions are regulated with high spatial control through the local activation of chemical processes in a complex inhomogeneous matrix. The development of synthetic macroscopic systems with a similar capacity allows fundamental studies aimed at understanding the relationship between local molecular events and the emergence of functional properties at the macroscopic level. Here, we show that a kinetically stable inhomogeneous hydrogel matrix is spontaneously formed upon the local injection of ATP. Locally, ATP templates the selfassembly of amphiphiles into large nanoreactors with a much lower diffusion rate compared to unassembled amphiphiles. The local depletion of unassembled amphiphiles near the injection point installs a concentration gradient along which unassembled amphiphiles diffuse from the surroundings to the center. This allows for a progressive local accumulation of self-assembled nanoreactors in the matrix upon repetitive cycles of ATP injection separated by time intervals during which diffusion of unassembled amphiphiles takes place. Contrary to the homogeneous matrix containing the same components, in the inhomogeneous matrix the local upregulation of a chemical reaction occurs. Depending on the way the same amount of injected ATP is administered to the hydrogel matrix different macroscopic distributions of nanoreactors are obtained, which affect the location in the matrix where the chemical reaction is upregulated.

Progressive Local Accumulation of Self-Assembled Nanoreactors in a Hydrogel Matrix through Repetitive Injections of ATP

Luca Gabrielli;Leonard J. Prins
2022

Abstract

Cellular functions are regulated with high spatial control through the local activation of chemical processes in a complex inhomogeneous matrix. The development of synthetic macroscopic systems with a similar capacity allows fundamental studies aimed at understanding the relationship between local molecular events and the emergence of functional properties at the macroscopic level. Here, we show that a kinetically stable inhomogeneous hydrogel matrix is spontaneously formed upon the local injection of ATP. Locally, ATP templates the selfassembly of amphiphiles into large nanoreactors with a much lower diffusion rate compared to unassembled amphiphiles. The local depletion of unassembled amphiphiles near the injection point installs a concentration gradient along which unassembled amphiphiles diffuse from the surroundings to the center. This allows for a progressive local accumulation of self-assembled nanoreactors in the matrix upon repetitive cycles of ATP injection separated by time intervals during which diffusion of unassembled amphiphiles takes place. Contrary to the homogeneous matrix containing the same components, in the inhomogeneous matrix the local upregulation of a chemical reaction occurs. Depending on the way the same amount of injected ATP is administered to the hydrogel matrix different macroscopic distributions of nanoreactors are obtained, which affect the location in the matrix where the chemical reaction is upregulated.
File in questo prodotto:
File Dimensione Formato  
jacs.1c13504.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 7.53 MB
Formato Adobe PDF
7.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact