We compute Chebyshev-like norming grids for polynomials on spherical triangles. The construction is based on a conjecture about norming grids for univariate trigonometric polynomials (supported by wide numerical testing), together with the fundamental notion of Dubiner distance for multivariate compact sets. Such grids can be used to extract Fekete-like interpolation points with slowly increasing Lebesgue constant, by basic numerical linear algebra.

Near-Optimal Polynomial Interpolation on Spherical Triangles

Sommariva A.;Vianello M.
2022

Abstract

We compute Chebyshev-like norming grids for polynomials on spherical triangles. The construction is based on a conjecture about norming grids for univariate trigonometric polynomials (supported by wide numerical testing), together with the fundamental notion of Dubiner distance for multivariate compact sets. Such grids can be used to extract Fekete-like interpolation points with slowly increasing Lebesgue constant, by basic numerical linear algebra.
File in questo prodotto:
File Dimensione Formato  
int_spher_tri.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 614.97 kB
Formato Adobe PDF
614.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact